Ii commited on
Commit
15c2dd2
·
verified ·
1 Parent(s): ad75f70

Delete face_align.py.txt

Browse files
Files changed (1) hide show
  1. face_align.py.txt +0 -141
face_align.py.txt DELETED
@@ -1,141 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- from skimage import transform as trans
4
-
5
- src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007],
6
- [51.157, 89.050], [57.025, 89.702]],
7
- dtype=np.float32)
8
- #<--left
9
- src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111],
10
- [45.177, 86.190], [64.246, 86.758]],
11
- dtype=np.float32)
12
-
13
- #---frontal
14
- src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493],
15
- [42.463, 87.010], [69.537, 87.010]],
16
- dtype=np.float32)
17
-
18
- #-->right
19
- src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111],
20
- [48.167, 86.758], [67.236, 86.190]],
21
- dtype=np.float32)
22
-
23
- #-->right profile
24
- src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007],
25
- [55.388, 89.702], [61.257, 89.050]],
26
- dtype=np.float32)
27
-
28
- src = np.array([src1, src2, src3, src4, src5])
29
- src_map = {112: src, 224: src * 2}
30
-
31
- arcface_src = np.array(
32
- [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
33
- [41.5493, 92.3655], [70.7299, 92.2041]],
34
- dtype=np.float32)
35
-
36
- arcface_src = np.expand_dims(arcface_src, axis=0)
37
-
38
- # In[66]:
39
-
40
-
41
- # lmk is prediction; src is template
42
- def estimate_norm(lmk, image_size=112, mode='arcface'):
43
- assert lmk.shape == (5, 2)
44
- tform = trans.SimilarityTransform()
45
- lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
46
- min_M = []
47
- min_index = []
48
- min_error = float('inf')
49
- if mode == 'arcface':
50
- if image_size == 112:
51
- src = arcface_src
52
- else:
53
- src = float(image_size) / 112 * arcface_src
54
- else:
55
- src = src_map[image_size]
56
- for i in np.arange(src.shape[0]):
57
- tform.estimate(lmk, src[i])
58
- M = tform.params[0:2, :]
59
- results = np.dot(M, lmk_tran.T)
60
- results = results.T
61
- error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
62
- # print(error)
63
- if error < min_error:
64
- min_error = error
65
- min_M = M
66
- min_index = i
67
- return min_M, min_index
68
-
69
-
70
- def norm_crop(img, landmark, image_size=112, mode='arcface'):
71
- M, pose_index = estimate_norm(landmark, image_size, mode)
72
- warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
73
- return warped
74
-
75
- def square_crop(im, S):
76
- if im.shape[0] > im.shape[1]:
77
- height = S
78
- width = int(float(im.shape[1]) / im.shape[0] * S)
79
- scale = float(S) / im.shape[0]
80
- else:
81
- width = S
82
- height = int(float(im.shape[0]) / im.shape[1] * S)
83
- scale = float(S) / im.shape[1]
84
- resized_im = cv2.resize(im, (width, height))
85
- det_im = np.zeros((S, S, 3), dtype=np.uint8)
86
- det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
87
- return det_im, scale
88
-
89
-
90
- def transform(data, center, output_size, scale, rotation):
91
- scale_ratio = scale
92
- rot = float(rotation) * np.pi / 180.0
93
- #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
94
- t1 = trans.SimilarityTransform(scale=scale_ratio)
95
- cx = center[0] * scale_ratio
96
- cy = center[1] * scale_ratio
97
- t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
98
- t3 = trans.SimilarityTransform(rotation=rot)
99
- t4 = trans.SimilarityTransform(translation=(output_size / 2,
100
- output_size / 2))
101
- t = t1 + t2 + t3 + t4
102
- M = t.params[0:2]
103
- cropped = cv2.warpAffine(data,
104
- M, (output_size, output_size),
105
- borderValue=0.0)
106
- return cropped, M
107
-
108
-
109
- def trans_points2d(pts, M):
110
- new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
111
- for i in range(pts.shape[0]):
112
- pt = pts[i]
113
- new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
114
- new_pt = np.dot(M, new_pt)
115
- #print('new_pt', new_pt.shape, new_pt)
116
- new_pts[i] = new_pt[0:2]
117
-
118
- return new_pts
119
-
120
-
121
- def trans_points3d(pts, M):
122
- scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
123
- #print(scale)
124
- new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
125
- for i in range(pts.shape[0]):
126
- pt = pts[i]
127
- new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
128
- new_pt = np.dot(M, new_pt)
129
- #print('new_pt', new_pt.shape, new_pt)
130
- new_pts[i][0:2] = new_pt[0:2]
131
- new_pts[i][2] = pts[i][2] * scale
132
-
133
- return new_pts
134
-
135
-
136
- def trans_points(pts, M):
137
- if pts.shape[1] == 2:
138
- return trans_points2d(pts, M)
139
- else:
140
- return trans_points3d(pts, M)
141
-