|
import gradio as gr |
|
from refacer import Refacer |
|
import argparse |
|
import os |
|
import requests |
|
import tempfile |
|
import shutil |
|
|
|
|
|
model_url = "https://huggingface.co/ofter/4x-UltraSharp/resolve/main/inswapper_128.onnx" |
|
model_path = "/home/user/app/inswapper_128.onnx" |
|
|
|
|
|
def download_model(): |
|
if not os.path.exists(model_path): |
|
print("Downloading the inswapper_128.onnx model...") |
|
response = requests.get(model_url) |
|
if response.status_code == 200: |
|
with open(model_path, 'wb') as f: |
|
f.write(response.content) |
|
print("Model downloaded successfully!") |
|
else: |
|
print(f"Error: Model download failed. Status code: {response.status_code}") |
|
else: |
|
print("Model already exists.") |
|
|
|
|
|
download_model() |
|
|
|
|
|
parser = argparse.ArgumentParser(description='Refacer') |
|
parser.add_argument("--max_num_faces", type=int, help="Max number of faces on UI", default=5) |
|
parser.add_argument("--force_cpu", help="Force CPU mode", default=False, action="store_true") |
|
parser.add_argument("--share_gradio", help="Share Gradio", default=False, action="store_true") |
|
parser.add_argument("--server_name", type=str, help="Server IP address", default="127.0.0.1") |
|
parser.add_argument("--server_port", type=int, help="Server port", default=7860) |
|
parser.add_argument("--colab_performance", help="Use in colab for better performance", default=False, action="store_true") |
|
args = parser.parse_args() |
|
|
|
|
|
refacer = Refacer(force_cpu=args.force_cpu, colab_performance=args.colab_performance) |
|
|
|
num_faces = args.max_num_faces |
|
|
|
|
|
def run(*vars): |
|
video_path = vars[0] |
|
origins = vars[1:(num_faces+1)] |
|
destinations = vars[(num_faces+1):(num_faces*2)+1] |
|
thresholds = vars[(num_faces*2)+1:] |
|
|
|
faces = [] |
|
for k in range(0, num_faces): |
|
if origins[k] is not None and destinations[k] is not None: |
|
faces.append({ |
|
'origin': origins[k], |
|
'destination': destinations[k], |
|
'threshold': thresholds[k] |
|
}) |
|
|
|
|
|
refaced_video_path = refacer.reface(video_path, faces) |
|
print(f"Refaced video can be found at {refaced_video_path}") |
|
|
|
|
|
return refaced_video_path |
|
|
|
|
|
origin = [] |
|
destination = [] |
|
thresholds = [] |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
gr.Markdown("# Refacer") |
|
with gr.Row(): |
|
video = gr.Video(label="Original video", format="mp4") |
|
video2 = gr.Video(label="Refaced video", interactive=False, format="mp4") |
|
|
|
for i in range(0, num_faces): |
|
with gr.Tab(f"Face #{i+1}"): |
|
with gr.Row(): |
|
origin.append(gr.Image(label="Face to replace")) |
|
destination.append(gr.Image(label="Destination face")) |
|
with gr.Row(): |
|
thresholds.append(gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.2)) |
|
|
|
with gr.Row(): |
|
button = gr.Button("Reface", variant="primary") |
|
|
|
|
|
button.click(fn=run, inputs=[video] + origin + destination + thresholds, outputs=[video2]) |
|
|
|
|
|
demo.queue().launch(show_error=True, share=args.share_gradio, server_name="0.0.0.0", server_port=args.server_port) |
|
|