Refacer / app.py
Ii
Update app.py
0009612 verified
raw
history blame
3.73 kB
import gradio as gr
from refacer import Refacer
import argparse
import os
import requests
import tempfile
import shutil
# Hugging Face URL to download the model
model_url = "https://huggingface.co/ofter/4x-UltraSharp/resolve/main/inswapper_128.onnx"
model_path = "/home/user/app/inswapper_128.onnx" # absolute path for the model in your environment
# Function to download the model if not exists
def download_model():
if not os.path.exists(model_path):
print("Downloading the inswapper_128.onnx model...")
response = requests.get(model_url)
if response.status_code == 200:
with open(model_path, 'wb') as f:
f.write(response.content)
print("Model downloaded successfully!")
else:
print(f"Error: Model download failed. Status code: {response.status_code}")
else:
print("Model already exists.")
# Download the model when the script runs
download_model()
# Argument parser
parser = argparse.ArgumentParser(description='Refacer')
parser.add_argument("--max_num_faces", type=int, help="Max number of faces on UI", default=5)
parser.add_argument("--force_cpu", help="Force CPU mode", default=False, action="store_true")
parser.add_argument("--share_gradio", help="Share Gradio", default=False, action="store_true")
parser.add_argument("--server_name", type=str, help="Server IP address", default="127.0.0.1")
parser.add_argument("--server_port", type=int, help="Server port", default=7860)
parser.add_argument("--colab_performance", help="Use in colab for better performance", default=False, action="store_true")
args = parser.parse_args()
# Initialize the Refacer class
refacer = Refacer(force_cpu=args.force_cpu, colab_performance=args.colab_performance)
num_faces = args.max_num_faces
# Run function for refacing video
def run(*vars):
video_path = vars[0]
origins = vars[1:(num_faces+1)]
destinations = vars[(num_faces+1):(num_faces*2)+1]
thresholds = vars[(num_faces*2)+1:]
faces = []
for k in range(0, num_faces):
if origins[k] is not None and destinations[k] is not None:
faces.append({
'origin': origins[k],
'destination': destinations[k],
'threshold': thresholds[k]
})
# Call refacer to process video and get refaced video path
refaced_video_path = refacer.reface(video_path, faces) # Get refaced video path
print(f"Refaced video can be found at {refaced_video_path}")
# Directly return the path to the Gradio UI without using ffmpeg or temp files
return refaced_video_path # Gradio will handle the video display
# Prepare Gradio components
origin = []
destination = []
thresholds = []
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("# Refacer")
with gr.Row():
video = gr.Video(label="Original video", format="mp4")
video2 = gr.Video(label="Refaced video", interactive=False, format="mp4")
for i in range(0, num_faces):
with gr.Tab(f"Face #{i+1}"):
with gr.Row():
origin.append(gr.Image(label="Face to replace"))
destination.append(gr.Image(label="Destination face"))
with gr.Row():
thresholds.append(gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.2))
with gr.Row():
button = gr.Button("Reface", variant="primary")
# Click event: Refacing the video and showing the refaced video in Gradio
button.click(fn=run, inputs=[video] + origin + destination + thresholds, outputs=[video2])
# Launch the Gradio app
demo.queue().launch(show_error=True, share=args.share_gradio, server_name="0.0.0.0", server_port=args.server_port)