File size: 3,673 Bytes
97c532e 8b9f861 0009612 53d8a0a 8b9f861 0009612 a1798ad 0009612 8b9f861 d4991cc 97c532e 9aa8011 0009612 ac304d9 9aa8011 d4991cc ac304d9 98c1e0d d4991cc 98c1e0d d4991cc 9aa8011 5ac550f 474b22a 5ac550f 53d8a0a ad53592 98c1e0d d4991cc 98c1e0d 9aa8011 ac304d9 d4991cc 98c1e0d ac304d9 98c1e0d d4991cc 98c1e0d 9aa8011 ac304d9 8b9f861 fd29508 97c532e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import io
import gradio as gr
from refacer import Refacer
import os
import requests
import tempfile
import subprocess
# Hugging Face URL to download the model
model_url = "https://huggingface.co/ofter/4x-UltraSharp/resolve/main/inswapper_128.onnx"
model_path = "/home/user/app/inswapper_128.onnx" # Absolute path for the model in your environment
# Function to download the model if not exists
def download_model():
if not os.path.exists(model_path):
print("Downloading the inswapper_128.onnx model...")
response = requests.get(model_url)
if response.status_code == 200:
with open(model_path, 'wb') as f:
f.write(response.content)
print("Model downloaded successfully!")
else:
print(f"Error: Model download failed. Status code: {response.status_code}")
else:
print("Model already exists.")
# Download the model when the script runs
download_model()
# Initialize the Refacer class
refacer = Refacer(force_cpu=False, colab_performance=False)
# Run function for refacing video
def run(video_path, *vars):
origins = vars[:5]
destinations = vars[5:10]
thresholds = vars[10:]
faces = []
for k in range(5):
if origins[k] is not None and destinations[k] is not None:
faces.append({
'origin': origins[k],
'destination': destinations[k],
'threshold': thresholds[k]
})
# Call refacer to process video and get refaced video path
# Change refaced video output path to /home/user/app/out
output_path = "/home/user/app/out/output_video.mp4"
refaced_video_path = refacer.reface(video_path, faces)
print(f"Refaced video can be found at {refaced_video_path}")
# Use tempfile to create a temporary video file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
temp_file_path = temp_file.name
# Run ffmpeg to process the video and write the result to the temporary file
ffmpeg_command = [
"ffmpeg", "-i", refaced_video_path, "-c:v", "libx264",
"-crf", "23", "-preset", "fast", temp_file_path
]
try:
subprocess.run(ffmpeg_command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except subprocess.CalledProcessError as e:
print(f"ffmpeg error: {e.stderr.decode()}") # Print stderr output for debugging
# Read the temporary file and convert it to a BytesIO buffer
with open(temp_file_path, "rb") as f:
video_buffer = io.BytesIO(f.read())
return video_buffer # Gradio will handle the video display
# Prepare Gradio components
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("# Refacer")
with gr.Row():
video = gr.Video(label="Original video", format="mp4")
video2 = gr.Video(label="Refaced video", interactive=False, format="mp4")
origins, destinations, thresholds = [], [], []
for i in range(5):
with gr.Tab(f"Face #{i+1}"):
with gr.Row():
origins.append(gr.Image(label="Face to replace"))
destinations.append(gr.Image(label="Destination face"))
with gr.Row():
thresholds.append(gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.2))
with gr.Row():
button = gr.Button("Reface", variant="primary")
button.click(fn=run, inputs=[video] + origins + destinations + thresholds, outputs=[video2])
# Launch the Gradio app
demo.queue().launch(show_error=True, server_name="0.0.0.0", server_port=7860)
|