Ii commited on
Commit
8b9f861
·
verified ·
1 Parent(s): c79aac2

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -0
app.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from refacer import Refacer
3
+ import argparse
4
+ import os
5
+ import requests
6
+
7
+ # Hugging Face URL to download the model
8
+ model_url = "https://huggingface.co/ofter/4x-UltraSharp/resolve/main/inswapper_128.onnx"
9
+ model_path = "./inswapper_128.onnx"
10
+
11
+ # Function to download the model
12
+ def download_model():
13
+ if not os.path.exists(model_path):
14
+ print("Downloading inswapper_128.onnx...")
15
+ response = requests.get(model_url)
16
+ if response.status_code == 200:
17
+ with open(model_path, 'wb') as f:
18
+ f.write(response.content)
19
+ print("Model downloaded successfully!")
20
+ else:
21
+ raise Exception(f"Failed to download the model. Status code: {response.status_code}")
22
+ else:
23
+ print("Model already exists.")
24
+
25
+ # Download the model when the script runs
26
+ download_model()
27
+
28
+ # Argument parser
29
+ parser = argparse.ArgumentParser(description='Refacer')
30
+ parser.add_argument("--max_num_faces", type=int, help="Max number of faces on UI", default=5)
31
+ parser.add_argument("--force_cpu", help="Force CPU mode", default=False, action="store_true")
32
+ parser.add_argument("--share_gradio", help="Share Gradio", default=False, action="store_true")
33
+ parser.add_argument("--server_name", type=str, help="Server IP address", default="127.0.0.1")
34
+ parser.add_argument("--server_port", type=int, help="Server port", default=7860)
35
+ parser.add_argument("--colab_performance", help="Use in colab for better performance", default=False, action="store_true")
36
+ args = parser.parse_args()
37
+
38
+ # Initialize the Refacer class
39
+ refacer = Refacer(force_cpu=args.force_cpu, colab_performance=args.colab_performance)
40
+
41
+ num_faces = args.max_num_faces
42
+
43
+ # Run function for refacing video
44
+ def run(*vars):
45
+ video_path = vars[0]
46
+ origins = vars[1:(num_faces+1)]
47
+ destinations = vars[(num_faces+1):(num_faces*2)+1]
48
+ thresholds = vars[(num_faces*2)+1:]
49
+
50
+ faces = []
51
+ for k in range(0, num_faces):
52
+ if origins[k] is not None and destinations[k] is not None:
53
+ faces.append({
54
+ 'origin': origins[k],
55
+ 'destination': destinations[k],
56
+ 'threshold': thresholds[k]
57
+ })
58
+
59
+ # Call refacer to process video and get file path
60
+ refaced_video_path = refacer.reface(video_path, faces) # refaced video path
61
+ print(f"Refaced video can be found at {refaced_video_path}")
62
+
63
+ return refaced_video_path # Return the file path to show in Gradio output
64
+
65
+ # Prepare Gradio components
66
+ origin = []
67
+ destination = []
68
+ thresholds = []
69
+
70
+ with gr.Blocks() as demo:
71
+ with gr.Row():
72
+ gr.Markdown("# Refacer")
73
+ with gr.Row():
74
+ video = gr.Video(label="Original video", format="mp4")
75
+ video2 = gr.Video(label="Refaced video", interactive=False, format="mp4")
76
+
77
+ for i in range(0, num_faces):
78
+ with gr.Tab(f"Face #{i+1}"):
79
+ with gr.Row():
80
+ origin.append(gr.Image(label="Face to replace"))
81
+ destination.append(gr.Image(label="Destination face"))
82
+ with gr.Row():
83
+ thresholds.append(gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.2))
84
+
85
+ with gr.Row():
86
+ button = gr.Button("Reface", variant="primary")
87
+
88
+ button.click(fn=run, inputs=[video] + origin + destination + thresholds, outputs=[video2])
89
+
90
+ # Launch the Gradio app
91
+ demo.queue().launch(show_error=True, share=args.share_gradio, server_name="0.0.0.0", server_port=args.server_port)