grammASRian / app.py
aldan.creo
Bugfix
23ca0a6
import gradio as gr
from transformers import pipeline
import numpy as np
import pandas as pd
import re
from collections import Counter
from functools import reduce
transcriber = pipeline(
"automatic-speech-recognition",
model="openai/whisper-base.en",
return_timestamps=True,
)
MAX_AUDIO_DURATION = 5
def transcribe_live(state, words_list, new_chunk):
try:
words_to_check_for = [word.strip().lower() for word in words_list.split(",")]
except:
gr.Warning("Please enter a valid list of words to check for")
words_to_check_for = []
stream = state.get("stream", None)
if new_chunk is None:
gr.Info("You can start transcribing by clicking on the Record button")
return state, {}, ""
sr, y = new_chunk
# Convert to mono if stereo
if y.ndim > 1:
y = y.mean(axis=1)
y = y.astype(np.float32)
y /= np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
duration_of_the_stream = len(stream) / sr
print(f"Duration of the stream: {duration_of_the_stream}")
# Only consider the last 30 seconds of the stream
if duration_of_the_stream > MAX_AUDIO_DURATION:
potentially_shorted_stream = stream[-sr * MAX_AUDIO_DURATION :]
else:
potentially_shorted_stream = stream
start_of_the_stream = duration_of_the_stream - (
len(potentially_shorted_stream) / sr
)
try:
new_transcription = transcriber(
{"sampling_rate": sr, "raw": potentially_shorted_stream}
)
except Exception as e:
gr.Error(f"Transcription failed. Error: {e}")
print(f"Transcription failed. Error: {e}")
return state, {}, ""
# We get something like: 'chunks': [{'timestamp': (0.0, 10.0), 'text': " I'm going to go."}]}
new_chunks = new_transcription["chunks"]
# Sum the start time of the new transcription to every chunk so that we get the real time
new_chunks_remapped = [
{
"timestamp": (
chunk["timestamp"][0] + start_of_the_stream,
chunk["timestamp"][1] + start_of_the_stream if chunk["timestamp"][1] else end_time_cutoff,
),
"text": chunk["text"],
}
for chunk in new_chunks
]
print(new_chunks_remapped)
# Remove the first 25% and the last 25% of the chunks, as they are usually not accurate (cut off)
# Don't remove the first 25% if the stream is less than 20 seconds
if duration_of_the_stream < MAX_AUDIO_DURATION:
start_time_cutoff = start_of_the_stream
else:
start_time_cutoff = start_of_the_stream + 0.0 * MAX_AUDIO_DURATION
end_time_cutoff = start_of_the_stream + 1.0 * MAX_AUDIO_DURATION
print(f"Start time cutoff: {start_time_cutoff}")
print(f"End time cutoff: {end_time_cutoff}")
print(f"Start of the stream: {start_of_the_stream}")
print(f"Before filtering: {new_chunks_remapped}")
new_chunks_remapped = [
chunk
for chunk in new_chunks_remapped
if chunk["timestamp"][0] >= start_time_cutoff
and chunk["timestamp"][1] <= end_time_cutoff
]
print(f"After filtering: {new_chunks_remapped}")
# Merge the new transcription with the previous transcription.
# Take the texts from the previous transcription up to the time when the new transcription starts
previous_chunks = state.get("transcription_chunks", [])
merged_chunks = [
chunk for chunk in previous_chunks if chunk["timestamp"][1] <= start_time_cutoff
] + new_chunks_remapped
full_transcription_text = reduce(
lambda x, y: x + " " + y["text"], merged_chunks, ""
)
full_transcription_text_lower = full_transcription_text.lower()
# Use re to find all the words in the transcription, and their start and end indices
matches: list[re.Match] = list(
re.finditer(
r"\b(" + "|".join(words_to_check_for) + r")\b",
full_transcription_text_lower,
)
)
counter = Counter(
match.group(0) for match in matches if match.group(0) in words_to_check_for
)
new_counts_of_words = {word: counter.get(word, 0) for word in words_to_check_for}
new_highlighted_transcription = {
"text": full_transcription_text,
"entities": [
{
"entity": "FILLER",
"start": match.start(),
"end": match.end(),
}
for match in matches
],
}
new_state = {
"stream": stream,
"transcription_chunks": merged_chunks,
"counts_of_words": new_counts_of_words,
"highlighted_transcription": new_highlighted_transcription,
}
return (
new_state,
new_counts_of_words,
full_transcription_text,
merged_chunks,
new_highlighted_transcription,
)
with gr.Blocks() as demo:
state = gr.State(
value={
"stream": None,
"full_transcription": "",
"counts_of_words": {},
}
)
gr.Markdown(
"""
# GrammASRian
This app transcribes your speech in real-time and counts the number of filler words you use.
The intended use case is to help you become more aware of the filler words you use, so you can reduce them and improve your speech.
It uses the OpenAI Whisper model for transcription on a streaming configuration.
"""
)
filler_words = gr.Textbox(
label="List of filer words",
value="like, so, you know",
info="Enter a comma-separated list of words to check for",
)
recording = gr.Audio(streaming=True, label="Recording")
word_counts = gr.JSON(label="Filler words count", value={})
transcription = gr.Textbox(label="Transcription", value="", visible=False)
chunks = gr.JSON(label="Chunks", value=[], visible=False)
highlighted_transcription = gr.HighlightedText(
label="Transcription",
value={
"text": "",
"entities": [],
},
color_map={"FILLER": "red"},
)
recording.stream(
transcribe_live,
inputs=[state, filler_words, recording],
outputs=[state, word_counts, transcription, chunks, highlighted_transcription],
stream_every=MAX_AUDIO_DURATION,
time_limit=-1,
)
demo.launch()