Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import numpy as np | |
transcriber = pipeline( | |
"automatic-speech-recognition", | |
model="openai/whisper-base.en", | |
return_timestamps=True, | |
) | |
def transcribe_live(state, words_list, new_chunk): | |
print(f"state: {state}") | |
try: | |
words_to_check_for = [word.strip() for word in words_list.split(",")] | |
except: | |
gr.Warning("Please enter a valid list of words to check for") | |
words_to_check_for = [] | |
stream = state.get("stream", None) | |
previous_transcription = state.get("full_transcription", "") | |
previous_counts_of_words = state.get( | |
"counts_of_words", {word: 0 for word in words_to_check_for} | |
) | |
if new_chunk is None: | |
gr.Info("You can start transcribing by clicking on the Record button") | |
print("new chunk is None") | |
return state, previous_counts_of_words, previous_transcription | |
sr, y = new_chunk | |
# Convert to mono if stereo | |
if y.ndim > 1: | |
y = y.mean(axis=1) | |
y = y.astype(np.float32) | |
y /= np.max(np.abs(y)) | |
if stream is not None: | |
stream = np.concatenate([stream, y]) | |
else: | |
stream = y | |
try: | |
new_transcription = transcriber({"sampling_rate": sr, "raw": stream}) | |
except Exception as e: | |
gr.Error(f"Transcription failed. Error: {e}") | |
print(f"Transcription failed. Error: {e}") | |
return state, previous_counts_of_words, previous_transcription | |
print(f"new transcription: {new_transcription}") | |
full_transcription_text = new_transcription["text"] | |
full_transcription_text_lower = full_transcription_text.lower() | |
new_counts_of_words = { | |
word: full_transcription_text_lower.count(word) for word in words_to_check_for | |
} | |
new_state = { | |
"stream": stream, | |
"full_transcription": full_transcription_text, | |
"counts_of_words": new_counts_of_words, | |
} | |
print(f"new state: {new_state}") | |
return new_state, new_counts_of_words, full_transcription_text | |
with gr.Blocks() as demo: | |
state = gr.State( | |
value={ | |
"stream": None, | |
"full_transcription": "", | |
"counts_of_words": {}, | |
} | |
) | |
filler_words = gr.Textbox(label="List of filer words", value="like, so, you know") | |
recording = gr.Audio(streaming=True, label="Recording") | |
word_counts = gr.JSON(label="Filler words count", value={}) | |
transcription = gr.Textbox(label="Transcription", value="") | |
recording.stream( | |
transcribe_live, | |
inputs=[state, filler_words, recording], | |
outputs=[state, word_counts, transcription], | |
stream_every=5, | |
time_limit=60, | |
) | |
demo.launch(show_error=True) | |