File size: 9,994 Bytes
675c9d3
 
 
bd6c875
 
 
3dfa6ba
bd6c875
675c9d3
8f208cb
b3ef9b6
 
675c9d3
 
8f208cb
 
 
 
 
 
 
b3ef9b6
8f208cb
675c9d3
 
 
8f208cb
 
675c9d3
 
 
b3ef9b6
 
 
 
 
 
 
 
 
bd6c875
 
 
 
b3ef9b6
bd6c875
 
 
 
 
 
 
 
 
 
b3ef9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647ecd3
bd6c875
 
b3ef9b6
bd6c875
8f208cb
 
675c9d3
 
b3ef9b6
 
 
 
 
 
 
8f208cb
b3ef9b6
 
8f208cb
b3ef9b6
 
 
 
8f208cb
b3ef9b6
8f208cb
b3ef9b6
 
8f208cb
b3ef9b6
 
 
bd6c875
 
b3ef9b6
bd6c875
 
 
 
 
 
b3ef9b6
8f208cb
 
b3ef9b6
8f208cb
bd6c875
8f208cb
647ecd3
8f208cb
b3ef9b6
8f208cb
647ecd3
b3ef9b6
675c9d3
b3ef9b6
8f208cb
b70861c
8f208cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ef9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647ecd3
8f208cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647ecd3
 
 
9e7fba3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging

import gradio as gr
from huggingface_hub import InferenceClient
from safe_search import safe_search
from i_search import google, i_search as i_s

# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1"

API_KEY = os.getenv("HUGGINGFACE_API_KEY")

# --- Logging Setup ---
logging.basicConfig(
    filename="app.log",
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
)

# --- Agents ---
agents = [
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV",
    "DATA_SCIENCE",
    "UI_UX_DESIGN",
]

# --- Prompts ---
PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""

LOG_PROMPT = """
PROMPT: {content}
"""

LOG_RESPONSE = """
RESPONSE: {resp}
"""

COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History:
{history}
"""

ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is:
{history}
What is your next thought?
thought: 
What is your next action?
action: 
"""

TASK_PROMPT = """
You are a helpful AI assistant. Your current history is:
{history}
What is the next task?
task: 
"""

UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are:
{test_results}
What do you want to know about the test results?
thought: 
"""

# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
    prompt = " "
    for user_prompt, bot_response in history[-max_history_turns:]:
        prompt += f"[INST] {user_prompt} [/INST] {bot_response} "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def run_llm(
    prompt_template: str,
    stop_tokens: List[str],
    purpose: str,
    **prompt_kwargs: Dict
) -> str:
    seed = random.randint(1, 1111111111111111)
    logging.info(f"Seed: {seed}")

    content = PREFIX.format(
        date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        purpose=purpose,
        safe_search=safe_search,
    ) + prompt_template.format(**prompt_kwargs)
    if VERBOSE:
        logging.info(LOG_PROMPT.format(content=content))

    client = InferenceClient(model=MODEL_NAME, token=API_KEY)
    resp = client.text_generation(content, max_new_tokens=MAX_TOKENS, stop_sequences=stop_tokens, temperature=TEMPERATURE, top_p=TOP_P, repetition_penalty=REPETITION_PENALTY)
    if VERBOSE:
        logging.info(LOG_RESPONSE.format(resp=resp))
    return resp

def generate(
    prompt: str,
    history: List[Tuple[str, str]],
    agent_name: str = agents[0],
    sys_prompt: str = "",
    temperature: float = TEMPERATURE,
    max_new_tokens: int = MAX_TOKENS,
    top_p: float = TOP_P,
    repetition_penalty: float = REPETITION_PENALTY,
) -> str:
    content = PREFIX.format(
        date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        purpose=f"Generating response as {agent_name}",
        safe_search=safe_search,
    ) + sys_prompt + "\n" + prompt
    if VERBOSE:
        logging.info(LOG_PROMPT.format(content=content))

    client = InferenceClient(model=MODEL_NAME, token=API_KEY)
    stream = client.text_generation(content, stream=True, details=True, return_full_text=False, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens)
    return "".join(chunk.text for chunk in stream)

def main():
    with gr.Blocks() as demo:
        gr.Markdown("## FragMixt: The No-Code Development Powerhouse")
        gr.Markdown("### Your AI-Powered Development Companion")

        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
                message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
                submit_button = gr.Button(value="Send")
            
            with gr.Column(scale=1):
                purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
                agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True)
                sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
                temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
                max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
                top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
                repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")

        with gr.Tabs():
            with gr.TabItem("Project Explorer"):
                project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
                explore_button = gr.Button(value="Explore")
                project_output = gr.Textbox(label="File Tree", lines=20)

            with gr.TabItem("Code Editor"):
                code_editor = gr.Code(label="Code Editor", language="python")
                run_code_button = gr.Button(value="Run Code")
                code_output = gr.Textbox(label="Code Output", lines=10)

            with gr.TabItem("File Management"):
                file_list = gr.Dropdown(label="Select File", choices=[], interactive=True)
                file_content = gr.Textbox(label="File Content", lines=20)
                save_file_button = gr.Button(value="Save File")
                create_file_button = gr.Button(value="Create New File")
                delete_file_button = gr.Button(value="Delete File")

        history = gr.State([])

        def chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
            prompt = format_prompt(message, history)
            response = generate(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
            history.append((message, response))
            return history, history

        submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])

        def explore_project(project_path: str) -> str:
            try:
                tree = subprocess.check_output(["tree", project_path]).decode("utf-8")
                return tree
            except Exception as e:
                return f"Error exploring project: {e}"

        explore_button.click(explore_project, inputs=[project_path], outputs=[project_output])

        def run_code(code: str) -> str:
            try:
                exec_globals = {}
                exec(code, exec_globals)
                output = exec_globals.get('__builtins__', {}).get('print', print)
                return str(output)
            except Exception as e:
                return f"Error running code: {e}"

        run_code_button.click(run_code, inputs=[code_editor], outputs=[code_output])

        def load_file_list(project_path: str) -> List[str]:
            try:
                return [f for f in os.listdir(project_path) if os.path.isfile(os.path.join(project_path, f))]
            except Exception as e:
                return [f"Error loading file list: {e}"]

        def load_file_content(project_path: str, file_name: str) -> str:
            try:
                with open(os.path.join(project_path, file_name), 'r') as file:
                    return file.read()
            except Exception as e:
                return f"Error loading file content: {e}"

        def save_file(project_path: str, file_name: str, content: str) -> str:
            try:
                with open(os.path.join(project_path, file_name), 'w') as file:
                    file.write(content)
                return f"File {file_name} saved successfully."
            except Exception as e:
                return f"Error saving file: {e}"

        def create_file(project_path: str, file_name: str) -> str:
            try:
                open(os.path.join(project_path, file_name), 'a').close()
                return f"File {file_name} created successfully."
            except Exception as e:
                return f"Error creating file: {e}"

        def delete_file(project_path: str, file_name: str) -> str:
            try:
                os.remove(os.path.join(project_path, file_name))
                return f"File {file_name} deleted successfully."
            except Exception as e:
                return f"Error deleting file: {e}"

        project_path.change(load_file_list, inputs=[project_path], outputs=[file_list])
        file_list.change(load_file_content, inputs=[project_path, file_list], outputs=[file_content])
        save_file_button.click(save_file, inputs=[project_path, file_list, file_content], outputs=[gr.Textbox()])
        create_file_button.click(create_file, inputs=[project_path, gr.Textbox(label="New File Name")], outputs=[gr.Textbox()])
        delete_file_button.click(delete_file, inputs=[project_path, file_list], outputs=[gr.Textbox()])

    demo.launch()

if __name__ == "__main__":
    main()