Spaces:
Sleeping
Sleeping
File size: 9,994 Bytes
675c9d3 bd6c875 3dfa6ba bd6c875 675c9d3 8f208cb b3ef9b6 675c9d3 8f208cb b3ef9b6 8f208cb 675c9d3 8f208cb 675c9d3 b3ef9b6 bd6c875 b3ef9b6 bd6c875 b3ef9b6 647ecd3 bd6c875 b3ef9b6 bd6c875 8f208cb 675c9d3 b3ef9b6 8f208cb b3ef9b6 8f208cb b3ef9b6 8f208cb b3ef9b6 8f208cb b3ef9b6 8f208cb b3ef9b6 bd6c875 b3ef9b6 bd6c875 b3ef9b6 8f208cb b3ef9b6 8f208cb bd6c875 8f208cb 647ecd3 8f208cb b3ef9b6 8f208cb 647ecd3 b3ef9b6 675c9d3 b3ef9b6 8f208cb b70861c 8f208cb b3ef9b6 647ecd3 8f208cb 647ecd3 9e7fba3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import gradio as gr
from huggingface_hub import InferenceClient
from safe_search import safe_search
from i_search import google, i_search as i_s
# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1"
API_KEY = os.getenv("HUGGINGFACE_API_KEY")
# --- Logging Setup ---
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Agents ---
agents = [
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV",
"DATA_SCIENCE",
"UI_UX_DESIGN",
]
# --- Prompts ---
PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""
LOG_PROMPT = """
PROMPT: {content}
"""
LOG_RESPONSE = """
RESPONSE: {resp}
"""
COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History:
{history}
"""
ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is:
{history}
What is your next thought?
thought:
What is your next action?
action:
"""
TASK_PROMPT = """
You are a helpful AI assistant. Your current history is:
{history}
What is the next task?
task:
"""
UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are:
{test_results}
What do you want to know about the test results?
thought:
"""
# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
prompt = " "
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"[INST] {user_prompt} [/INST] {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_llm(
prompt_template: str,
stop_tokens: List[str],
purpose: str,
**prompt_kwargs: Dict
) -> str:
seed = random.randint(1, 1111111111111111)
logging.info(f"Seed: {seed}")
content = PREFIX.format(
date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
logging.info(LOG_PROMPT.format(content=content))
client = InferenceClient(model=MODEL_NAME, token=API_KEY)
resp = client.text_generation(content, max_new_tokens=MAX_TOKENS, stop_sequences=stop_tokens, temperature=TEMPERATURE, top_p=TOP_P, repetition_penalty=REPETITION_PENALTY)
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp=resp))
return resp
def generate(
prompt: str,
history: List[Tuple[str, str]],
agent_name: str = agents[0],
sys_prompt: str = "",
temperature: float = TEMPERATURE,
max_new_tokens: int = MAX_TOKENS,
top_p: float = TOP_P,
repetition_penalty: float = REPETITION_PENALTY,
) -> str:
content = PREFIX.format(
date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
purpose=f"Generating response as {agent_name}",
safe_search=safe_search,
) + sys_prompt + "\n" + prompt
if VERBOSE:
logging.info(LOG_PROMPT.format(content=content))
client = InferenceClient(model=MODEL_NAME, token=API_KEY)
stream = client.text_generation(content, stream=True, details=True, return_full_text=False, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens)
return "".join(chunk.text for chunk in stream)
def main():
with gr.Blocks() as demo:
gr.Markdown("## FragMixt: The No-Code Development Powerhouse")
gr.Markdown("### Your AI-Powered Development Companion")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
submit_button = gr.Button(value="Send")
with gr.Column(scale=1):
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True)
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
with gr.Tabs():
with gr.TabItem("Project Explorer"):
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
explore_button = gr.Button(value="Explore")
project_output = gr.Textbox(label="File Tree", lines=20)
with gr.TabItem("Code Editor"):
code_editor = gr.Code(label="Code Editor", language="python")
run_code_button = gr.Button(value="Run Code")
code_output = gr.Textbox(label="Code Output", lines=10)
with gr.TabItem("File Management"):
file_list = gr.Dropdown(label="Select File", choices=[], interactive=True)
file_content = gr.Textbox(label="File Content", lines=20)
save_file_button = gr.Button(value="Save File")
create_file_button = gr.Button(value="Create New File")
delete_file_button = gr.Button(value="Delete File")
history = gr.State([])
def chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
prompt = format_prompt(message, history)
response = generate(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
history.append((message, response))
return history, history
submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])
def explore_project(project_path: str) -> str:
try:
tree = subprocess.check_output(["tree", project_path]).decode("utf-8")
return tree
except Exception as e:
return f"Error exploring project: {e}"
explore_button.click(explore_project, inputs=[project_path], outputs=[project_output])
def run_code(code: str) -> str:
try:
exec_globals = {}
exec(code, exec_globals)
output = exec_globals.get('__builtins__', {}).get('print', print)
return str(output)
except Exception as e:
return f"Error running code: {e}"
run_code_button.click(run_code, inputs=[code_editor], outputs=[code_output])
def load_file_list(project_path: str) -> List[str]:
try:
return [f for f in os.listdir(project_path) if os.path.isfile(os.path.join(project_path, f))]
except Exception as e:
return [f"Error loading file list: {e}"]
def load_file_content(project_path: str, file_name: str) -> str:
try:
with open(os.path.join(project_path, file_name), 'r') as file:
return file.read()
except Exception as e:
return f"Error loading file content: {e}"
def save_file(project_path: str, file_name: str, content: str) -> str:
try:
with open(os.path.join(project_path, file_name), 'w') as file:
file.write(content)
return f"File {file_name} saved successfully."
except Exception as e:
return f"Error saving file: {e}"
def create_file(project_path: str, file_name: str) -> str:
try:
open(os.path.join(project_path, file_name), 'a').close()
return f"File {file_name} created successfully."
except Exception as e:
return f"Error creating file: {e}"
def delete_file(project_path: str, file_name: str) -> str:
try:
os.remove(os.path.join(project_path, file_name))
return f"File {file_name} deleted successfully."
except Exception as e:
return f"Error deleting file: {e}"
project_path.change(load_file_list, inputs=[project_path], outputs=[file_list])
file_list.change(load_file_content, inputs=[project_path, file_list], outputs=[file_content])
save_file_button.click(save_file, inputs=[project_path, file_list, file_content], outputs=[gr.Textbox()])
create_file_button.click(create_file, inputs=[project_path, gr.Textbox(label="New File Name")], outputs=[gr.Textbox()])
delete_file_button.click(delete_file, inputs=[project_path, file_list], outputs=[gr.Textbox()])
demo.launch()
if __name__ == "__main__":
main() |