StableSpann3R / backend_utils.py
Stable-X's picture
update demo
e66346c
import numpy as np
import open3d as o3d
import torch
from tqdm import tqdm
import torch.nn.functional as F
def pts2normal(pts):
h, w, _ = pts.shape
# Compute differences in x and y directions
dx = torch.cat([pts[2:, 1:-1] - pts[:-2, 1:-1]], dim=0)
dy = torch.cat([pts[1:-1, 2:] - pts[1:-1, :-2]], dim=1)
# Compute normal vectors using cross product
normal_map = F.normalize(torch.cross(dx, dy, dim=-1), dim=-1)
# Create padded normal map
padded_normal_map = torch.zeros_like(pts)
padded_normal_map[1:-1, 1:-1, :] = normal_map
# Pad the borders
padded_normal_map[0, 1:-1, :] = normal_map[0, :, :] # Top edge
padded_normal_map[-1, 1:-1, :] = normal_map[-1, :, :] # Bottom edge
padded_normal_map[1:-1, 0, :] = normal_map[:, 0, :] # Left edge
padded_normal_map[1:-1, -1, :] = normal_map[:, -1, :] # Right edge
# Pad the corners
padded_normal_map[0, 0, :] = normal_map[0, 0, :] # Top-left corner
padded_normal_map[0, -1, :] = normal_map[0, -1, :] # Top-right corner
padded_normal_map[-1, 0, :] = normal_map[-1, 0, :] # Bottom-left corner
padded_normal_map[-1, -1, :] = normal_map[-1, -1, :] # Bottom-right corner
return padded_normal_map
def point2mesh(pcd, depth=8, density_threshold=0.1, clean_mesh=True):
print("\nPerforming Poisson surface reconstruction...")
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcd, depth=depth, width=0, scale=1.1, linear_fit=False)
print(f"Reconstructed mesh has {len(mesh.vertices)} vertices and {len(mesh.triangles)} triangles")
# Normalize densities
densities = np.asarray(densities)
densities = (densities - densities.min()) / (densities.max() - densities.min())
# Remove low density vertices
print("\nPruning low-density vertices...")
vertices_to_remove = densities < np.quantile(densities, density_threshold)
mesh.remove_vertices_by_mask(vertices_to_remove)
print(f"Pruned mesh has {len(mesh.vertices)} vertices and {len(mesh.triangles)} triangles")
if clean_mesh:
print("\nCleaning the mesh...")
mesh.remove_degenerate_triangles()
mesh.remove_duplicated_triangles()
mesh.remove_duplicated_vertices()
mesh.remove_non_manifold_edges()
print(f"Final cleaned mesh has {len(mesh.vertices)} vertices and {len(mesh.triangles)} triangles")
mesh.compute_triangle_normals()
return mesh
def combine_and_clean_point_clouds(pcds, voxel_size):
"""
Combine, downsample, and clean a list of point clouds.
Parameters:
pcds (list): List of open3d.geometry.PointCloud objects to be processed.
voxel_size (float): The size of the voxel for downsampling.
Returns:
o3d.geometry.PointCloud: The cleaned and combined point cloud.
"""
print("\nCombining point clouds...")
pcd_combined = o3d.geometry.PointCloud()
for p3d in pcds:
pcd_combined += p3d
print("\nDownsampling the combined point cloud...")
pcd_combined = pcd_combined.voxel_down_sample(voxel_size)
print(f"Downsampled from {len(pcd_combined.points)} to {len(pcd_combined.points)} points")
print("\nCleaning the combined point cloud...")
cl, ind = pcd_combined.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)
pcd_cleaned = pcd_combined.select_by_index(ind)
print(f"Cleaned point cloud contains {len(pcd_cleaned.points)} points.")
print(f"Removed {len(pcd_combined.points) - len(pcd_cleaned.points)} outlier points.")
return pcd_cleaned
def improved_multiway_registration(pcds, descriptors=None, voxel_size=0.05,
max_correspondence_distance_coarse=None, max_correspondence_distance_fine=None,
overlap=5, quadratic_overlap=False, use_colored_icp=False):
if max_correspondence_distance_coarse is None:
max_correspondence_distance_coarse = voxel_size * 1.5
if max_correspondence_distance_fine is None:
max_correspondence_distance_fine = voxel_size * 0.15
def pairwise_registration(source, target, use_colored_icp, max_correspondence_distance_coarse, max_correspondence_distance_fine):
current_transformation = np.identity(4)
try:
if use_colored_icp:
icp_fine = o3d.pipelines.registration.registration_colored_icp(
source, target, max_correspondence_distance_fine, current_transformation,
o3d.pipelines.registration.TransformationEstimationForColoredICP(),
o3d.pipelines.registration.ICPConvergenceCriteria(relative_fitness=1e-6,
relative_rmse=1e-6,
max_iteration=100))
else:
icp_fine = o3d.pipelines.registration.registration_icp(
source, target, max_correspondence_distance_fine,
current_transformation,
o3d.pipelines.registration.TransformationEstimationPointToPlane())
fitness = icp_fine.fitness
FITNESS_THRESHOLD = 0.01
if fitness >= FITNESS_THRESHOLD:
current_transformation = icp_fine.transformation
information_icp = o3d.pipelines.registration.get_information_matrix_from_point_clouds(
source, target, max_correspondence_distance_fine,
current_transformation)
return current_transformation, information_icp, True
else:
print(f"Registration failed. Fitness {fitness} is below threshold {FITNESS_THRESHOLD}")
return None, None, False
except RuntimeError as e:
print(f" ICP registration failed: {str(e)}")
return None, None, False
def detect_loop_closure(descriptors, min_interval=3, similarity_threshold=0.9):
n_pcds = len(descriptors)
loop_edges = []
for i in range(n_pcds):
for j in range(i + min_interval, n_pcds):
similarity = torch.dot(descriptors[i], descriptors[j])
if similarity > similarity_threshold:
loop_edges.append((i, j))
return loop_edges
def generate_pairs(n_pcds, overlap, quadratic_overlap):
pairs = []
for i in range(n_pcds - 1):
for j in range(i + 1, min(i + overlap + 1, n_pcds)):
pairs.append((i, j))
if quadratic_overlap:
q = 2**(j-i)
if q > overlap and i + q < n_pcds:
pairs.append((i, i + q))
return pairs
def full_registration(pcds_down, pairs, loop_edges):
pose_graph = o3d.pipelines.registration.PoseGraph()
n_pcds = len(pcds_down)
for i in range(n_pcds):
pose_graph.nodes.append(o3d.pipelines.registration.PoseGraphNode(np.identity(4)))
print("\nPerforming pairwise registration:")
for source_id, target_id in tqdm(pairs):
transformation_icp, information_icp, success = pairwise_registration(
pcds_down[source_id], pcds_down[target_id], use_colored_icp,
max_correspondence_distance_coarse, max_correspondence_distance_fine)
if success:
uncertain = abs(target_id - source_id) == 1
pose_graph.edges.append(
o3d.pipelines.registration.PoseGraphEdge(source_id,
target_id,
transformation_icp,
information_icp,
uncertain=uncertain))
else:
print(f" Skipping edge between {source_id} and {target_id} due to ICP failure")
# Add loop closure edges
print("\nAdding loop closure edges:")
for source_id, target_id in tqdm(loop_edges):
transformation_icp, information_icp, success = pairwise_registration(
pcds_down[source_id], pcds_down[target_id], use_colored_icp,
max_correspondence_distance_coarse, max_correspondence_distance_fine)
if success:
pose_graph.edges.append(
o3d.pipelines.registration.PoseGraphEdge(source_id,
target_id,
transformation_icp,
information_icp,
uncertain=True))
else:
print(f" Skipping loop closure edge between {source_id} and {target_id} due to ICP failure")
return pose_graph
print("\n--- Improved Multiway Registration Process ---")
print(f"Number of point clouds: {len(pcds)}")
print(f"Voxel size: {voxel_size}")
print(f"Max correspondence distance (coarse): {max_correspondence_distance_coarse}")
print(f"Max correspondence distance (fine): {max_correspondence_distance_fine}")
print(f"Overlap: {overlap}")
print(f"Quadratic overlap: {quadratic_overlap}")
print("\nPreprocessing point clouds...")
pcds_down = pcds
print(f"Preprocessing complete. {len(pcds_down)} point clouds processed.")
print("\nGenerating initial graph pairs...")
pairs = generate_pairs(len(pcds), overlap, quadratic_overlap)
print(f"Generated {len(pairs)} pairs for initial graph.")
if descriptors is None:
print("\nNo descriptors provided. Skipping loop closure detection.")
loop_edges = []
else:
print(descriptors[0].shape)
print("\nDetecting loop closures...")
loop_edges = detect_loop_closure(descriptors)
print(f"Detected {len(loop_edges)} loop closures.")
print("\nPerforming full registration...")
pose_graph = full_registration(pcds_down, pairs, loop_edges)
print("\nOptimizing PoseGraph...")
option = o3d.pipelines.registration.GlobalOptimizationOption(
max_correspondence_distance=max_correspondence_distance_fine,
edge_prune_threshold=0.25,
reference_node=0)
o3d.pipelines.registration.global_optimization(
pose_graph,
o3d.pipelines.registration.GlobalOptimizationLevenbergMarquardt(),
o3d.pipelines.registration.GlobalOptimizationConvergenceCriteria(),
option)
# Count edges for each node
edge_count = {i: 0 for i in range(len(pcds))}
for edge in pose_graph.edges:
edge_count[edge.source_node_id] += 1
edge_count[edge.target_node_id] += 1
# Filter nodes with more than 3 edges
valid_nodes = [count > 3 for count in edge_count.values()]
print("\nTransforming and combining point clouds...")
pcd_combined = o3d.geometry.PointCloud()
for point_id, is_valid in enumerate(valid_nodes):
if is_valid:
pcds[point_id].transform(pose_graph.nodes[point_id].pose)
pcd_combined += pcds[point_id]
else:
print(f"Skipping point cloud {point_id} as it has {edge_count[point_id]} edges (<=3)")
print("\nDownsampling the combined point cloud...")
# pcd_combined.orient_normals_consistent_tangent_plane(k=30)
pcd_combined = pcd_combined.voxel_down_sample(voxel_size * 0.1)
print(f"Downsampled from {len(pcd_combined.points)} to {len(pcd_combined.points)} points")
print("\nCleaning the combined point cloud...")
cl, ind = pcd_combined.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)
pcd_cleaned = pcd_combined.select_by_index(ind)
print(f"Cleaned point cloud contains {len(pcd_cleaned.points)} points.")
print(f"Removed {len(pcd_combined.points) - len(pcd_cleaned.points)} outlier points.")
print("\nMultiway registration complete.")
print(f"Included {len(valid_nodes)} out of {len(pcds)} point clouds (with >3 edges).")
return pcd_cleaned, pose_graph, valid_nodes