Spaces:
Running
Running
File size: 18,189 Bytes
e4bf056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
import copy
import torch
import numpy as np
import torch.nn as nn
from functools import partial
from torch.nn import functional as F
from croco.models.blocks import Block
from dust3r.model import AsymmetricCroCo3DStereo
class SpatialMemory():
def __init__(self, norm_q, norm_k, norm_v, mem_dropout=None,
long_mem_size=4000, work_mem_size=5,
attn_thresh=5e-4, sim_thresh=0.95,
save_attn=False):
self.norm_q = norm_q
self.norm_k = norm_k
self.norm_v = norm_v
self.mem_dropout = mem_dropout
self.attn_thresh = attn_thresh
self.long_mem_size = long_mem_size
self.work_mem_size = work_mem_size
self.top_k = long_mem_size
self.save_attn = save_attn
self.sim_thresh = sim_thresh
self.init_mem()
def init_mem(self):
self.mem_k = None
self.mem_v = None
self.mem_c = None
self.mem_count = None
self.mem_attn = None
self.mem_pts = None
self.mem_imgs = None
self.lm = 0
self.wm = 0
if self.save_attn:
self.attn_vis = None
def add_mem_k(self, feat):
if self.mem_k is None:
self.mem_k = feat
else:
self.mem_k = torch.cat((self.mem_k, feat), dim=1)
return self.mem_k
def add_mem_v(self, feat):
if self.mem_v is None:
self.mem_v = feat
else:
self.mem_v = torch.cat((self.mem_v, feat), dim=1)
return self.mem_v
def add_mem_c(self, feat):
if self.mem_c is None:
self.mem_c = feat
else:
self.mem_c = torch.cat((self.mem_c, feat), dim=1)
return self.mem_c
def add_mem_pts(self, pts_cur):
if pts_cur is not None:
if self.mem_pts is None:
self.mem_pts = pts_cur
else:
self.mem_pts = torch.cat((self.mem_pts, pts_cur), dim=1)
def add_mem_img(self, img_cur):
if img_cur is not None:
if self.mem_imgs is None:
self.mem_imgs = img_cur
else:
self.mem_imgs = torch.cat((self.mem_imgs, img_cur), dim=1)
def add_mem(self, feat_k, feat_v, pts_cur=None, img_cur=None):
if self.mem_count is None:
self.mem_count = torch.zeros_like(feat_k[:, :, :1])
self.mem_attn = torch.zeros_like(feat_k[:, :, :1])
else:
self.mem_count += 1
self.mem_count = torch.cat((self.mem_count, torch.zeros_like(feat_k[:, :, :1])), dim=1)
self.mem_attn = torch.cat((self.mem_attn, torch.zeros_like(feat_k[:, :, :1])), dim=1)
self.add_mem_k(feat_k)
self.add_mem_v(feat_v)
self.add_mem_pts(pts_cur)
self.add_mem_img(img_cur)
def check_sim(self, feat_k, thresh=0.7):
# Do correlation with working memory
if self.mem_k is None or thresh==1.0:
return False
wmem_size = self.wm * 196
# wm: BS, T, 196, C
wm = self.mem_k[:, -wmem_size:].reshape(self.mem_k.shape[0], -1, 196, self.mem_k.shape[-1])
feat_k_norm = F.normalize(feat_k, p=2, dim=-1)
wm_norm = F.normalize(wm, p=2, dim=-1)
corr = torch.einsum('bpc,btpc->btp', feat_k_norm, wm_norm)
mean_corr = torch.mean(corr, dim=-1)
if mean_corr.max() > thresh:
print('Similarity detected:', mean_corr.max())
return True
return False
def add_mem_check(self, feat_k, feat_v, pts_cur=None, img_cur=None):
if self.check_sim(feat_k, thresh=self.sim_thresh):
return
self.add_mem(feat_k, feat_v, pts_cur, img_cur)
self.wm += 1
if self.wm > self.work_mem_size:
self.wm -= 1
if self.long_mem_size == 0:
self.mem_k = self.mem_k[:, 196:]
self.mem_v = self.mem_v[:, 196:]
self.mem_count = self.mem_count[:, 196:]
self.mem_attn = self.mem_attn[:, 196:]
print('Memory pruned:', self.mem_k.shape)
else:
self.lm += 196 # TODO: Change this to the actual size of the memory bank
if self.lm > self.long_mem_size:
self.memory_prune()
self.lm = self.top_k - self.wm * 196
def memory_read(self, feat, res=True):
'''
Params:
- feat: [bs, p, c]
- mem_k: [bs, t, p, c]
- mem_v: [bs, t, p, c]
- mem_c: [bs, t, p, 1]
'''
affinity = torch.einsum('bpc,bxc->bpx', self.norm_q(feat), self.norm_k(self.mem_k.reshape(self.mem_k.shape[0], -1, self.mem_k.shape[-1])))
affinity /= torch.sqrt(torch.tensor(feat.shape[-1]).float())
if self.mem_c is not None:
affinity = affinity * self.mem_c.view(self.mem_c.shape[0], 1, -1)
attn = torch.softmax(affinity, dim=-1)
if self.save_attn:
if self.attn_vis is None:
self.attn_vis = attn.reshape(-1)
else:
self.attn_vis = torch.cat((self.attn_vis, attn.reshape(-1)), dim=0)
if self.mem_dropout is not None:
attn = self.mem_dropout(attn)
if self.attn_thresh > 0:
attn[attn<self.attn_thresh] = 0
attn = attn / attn.sum(dim=-1, keepdim=True)
out = torch.einsum('bpx,bxc->bpc', attn, self.norm_v(self.mem_v.reshape(self.mem_v.shape[0], -1, self.mem_v.shape[-1])))
if res:
out = out + feat
total_attn = torch.sum(attn, dim=-2)
self.mem_attn += total_attn[..., None]
return out
def memory_prune(self):
weights = self.mem_attn / self.mem_count
weights[self.mem_count<self.work_mem_size+5] = 1e8
num_mem_b = self.mem_k.shape[1]
top_k_values, top_k_indices = torch.topk(weights, self.top_k, dim=1)
top_k_indices_expanded = top_k_indices.expand(-1, -1, self.mem_k.size(-1))
self.mem_k = torch.gather(self.mem_k, -2, top_k_indices_expanded)
self.mem_v = torch.gather(self.mem_v, -2, top_k_indices_expanded)
self.mem_attn = torch.gather(self.mem_attn, -2, top_k_indices)
self.mem_count = torch.gather(self.mem_count, -2, top_k_indices)
if self.mem_pts is not None:
top_k_indices_expanded = top_k_indices.unsqueeze(-1).expand(-1, -1, 256, 3)
self.mem_pts = torch.gather(self.mem_pts, 1, top_k_indices_expanded)
self.mem_imgs = torch.gather(self.mem_imgs, 1, top_k_indices_expanded)
num_mem_a = self.mem_k.shape[1]
print('Memory pruned:', num_mem_b, '->', num_mem_a)
class Spann3R(nn.Module):
def __init__(self, dus3r_name="./checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth",
use_feat=False, mem_pos_enc=False, memory_dropout=0.15):
super(Spann3R, self).__init__()
# config
self.use_feat = use_feat
self.mem_pos_enc = mem_pos_enc
# DUSt3R
self.dust3r = AsymmetricCroCo3DStereo.from_pretrained(dus3r_name, landscape_only=True)
# Memory encoder
self.set_memory_encoder(enc_embed_dim=768 if use_feat else 1024, memory_dropout=memory_dropout)
self.set_attn_head()
def set_memory_encoder(self, enc_depth=6, enc_embed_dim=1024, out_dim=1024, enc_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6),
memory_dropout=0.15):
self.value_encoder = nn.ModuleList([
Block(enc_embed_dim, enc_num_heads, mlp_ratio, qkv_bias=True,
norm_layer=norm_layer, rope=self.dust3r.rope if self.mem_pos_enc else None)
for i in range(enc_depth)])
self.value_norm = norm_layer(enc_embed_dim)
self.value_out = nn.Linear(enc_embed_dim, out_dim)
if not self.use_feat:
self.pos_patch_embed = copy.deepcopy(self.dust3r.patch_embed)
self.pos_patch_embed.load_state_dict(self.dust3r.patch_embed.state_dict())
# Normalization layers
self.norm_q = nn.LayerNorm(1024)
self.norm_k = nn.LayerNorm(1024)
self.norm_v = nn.LayerNorm(1024)
self.mem_dropout = nn.Dropout(memory_dropout)
def set_attn_head(self, enc_embed_dim=1024+768, out_dim=1024):
self.attn_head_1 = nn.Sequential(
nn.Linear(enc_embed_dim, enc_embed_dim),
nn.GELU(),
nn.Linear(enc_embed_dim, out_dim)
)
self.attn_head_2 = nn.Sequential(
nn.Linear(enc_embed_dim, enc_embed_dim),
nn.GELU(),
nn.Linear(enc_embed_dim, out_dim)
)
def encode_image(self, view):
img = view['img']
B = img.shape[0]
im_shape = view.get('true_shape', torch.tensor(img.shape[-2:])[None].repeat(B, 1))
out, pos, _ = self.dust3r._encode_image(img, im_shape)
return out, pos, im_shape
def encode_image_pairs(self, view1, view2):
img1 = view1['img']
img2 = view2['img']
B = img1.shape[0]
shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1))
shape2 = view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1))
out, pos, _ = self.dust3r._encode_image(torch.cat((img1, img2), dim=0),
torch.cat((shape1, shape2), dim=0))
out, out2 = out.chunk(2, dim=0)
pos, pos2 = pos.chunk(2, dim=0)
return out, out2, pos, pos2, shape1, shape2
def encode_frames(self, view1, view2, feat1, feat2, pos1, pos2, shape1, shape2):
if feat1 is None:
feat1, feat2, pos1, pos2, shape1, shape2 = self.encode_image_pairs(view1, view2)
else:
feat1, pos1, shape1 = feat2, pos2, shape2
feat2, pos2, shape2 = self.encode_image(view2)
return feat1, feat2, pos1, pos2, shape1, shape2
def encode_feat_key(self, feat1, feat2, num=1):
feat = torch.cat((feat1, feat2), dim=-1)
feat_k = getattr(self, f'attn_head_{num}')(feat)
return feat_k
def encode_value(self, x, pos):
for block in self.value_encoder:
x = block(x, pos)
x = self.value_norm(x)
x = self.value_out(x)
return x
def encode_cur_value(self, res1, dec1, pos1, shape1):
if self.use_feat:
cur_v = self.encode_value(dec1[-1], pos1)
else:
out, pos_v = self.pos_patch_embed(res1['pts3d'].permute(0, 3, 1, 2), true_shape=shape1)
cur_v = self.encode_value(out, pos_v)
return cur_v
def decode(self, feat1, pos1, feat2, pos2):
dec1, dec2 = self.dust3r._decoder(feat1, pos1, feat2, pos2)
return dec1, dec2
def downstream_head(self, dec, true_shape, num=1):
with torch.cuda.amp.autocast(enabled=False):
res = self.dust3r._downstream_head(num, [tok.float() for tok in dec], true_shape)
return res
def find_initial_pair(self, graph, n_frames):
view1, view2, pred1, pred2 = graph['view1'], graph['view2'], graph['pred1'], graph['pred2']
n_pairs = len(view1['idx'])
conf_matrix = torch.zeros(n_frames, n_frames)
for i in range(n_pairs):
idx1, idx2 = view1['idx'][i], view2['idx'][i]
conf1 = pred1['conf'][i]
conf2 = pred2['conf'][i]
conf1_sig = (conf1-1)/conf1
conf2_sig = (conf2-1)/conf2
conf = conf1_sig.mean() + conf2_sig.mean()
conf_matrix[idx1, idx2] = conf
pair_idx = np.unravel_index(conf_matrix.argmax(), conf_matrix.shape)
print(f'init pair:{pair_idx}, conf: {conf_matrix.max()}')
return pair_idx
def find_next_best_view(self, frames, idx_todo, feat_fuse, pos1, shape1):
best_conf = 0.0
from copy import deepcopy
for i in idx_todo:
view = frames[i]
feat2, pos2, shape2 = self.encode_image(view)
dec1, dec2 = self.decode(feat_fuse, pos1, feat2, pos2)
res1 = self.downstream_head(dec1, shape1, 1)
res2 = self.downstream_head(dec2, shape2, 2)
conf1 = res1['conf']
conf2 = res2['conf']
conf1_sig = (conf1-1)/conf1
conf2_sig = (conf2-1)/conf2
total_conf_mean = conf1_sig.mean() + conf2_sig.mean()
if total_conf_mean > best_conf:
best_conf = total_conf_mean
best_id = i
best_dec1 = deepcopy(dec1)
best_dec2 = deepcopy(dec2)
best_res1 = deepcopy(res1)
best_res2 = deepcopy(res2)
best_feat2 = feat2
best_pos2 = pos2
best_shape2 = shape2
return best_id, best_dec1, best_dec2, best_res1, best_res2, best_feat2, best_pos2, best_shape2, best_conf
def offline_reconstruction(self, frames, graph):
n_frames = len(frames)
idx_todo = list(range(n_frames))
idx_used = []
sp_mem = SpatialMemory(self.norm_q, self.norm_k, self.norm_v, mem_dropout=self.mem_dropout)
pair_idx = self.find_initial_pair(graph, n_frames)
f1, f2 = frames[pair_idx[0]], frames[pair_idx[1]]
idx_used.append(pair_idx[0])
idx_used.append(pair_idx[1])
# remove those idxs from idx_todo
idx_todo.remove(pair_idx[0])
idx_todo.remove(pair_idx[1])
##### Encode frames
feat1, feat2, pos1, pos2, shape1, shape2 = self.encode_image_pairs(f1, f2)
feat_fuse = feat1
dec1, dec2 = self.decode(feat_fuse, pos1, feat2, pos2)
##### Regress pointmaps
with torch.cuda.amp.autocast(enabled=False):
res1 = self.downstream_head(dec1, shape1, 1)
res2 = self.downstream_head(dec2, shape2, 2)
##### Encode feat key
feat_k2 = None
preds = None
while True:
if feat_k2 is not None:
feat1 = feat2
pos1, shape1 = pos2, shape2
feat_fuse = sp_mem.memory_read(feat_k2, res=True)
id_n, dec1, dec2, res1, res2, feat2, pos2, shape2, best_conf = self.find_next_best_view(frames, idx_todo, feat_fuse, pos2, shape2)
idx_todo.remove(id_n)
idx_used.append(id_n)
print(f'next best view: {id_n}, conf: {best_conf}')
# encode feat
feat_k1 = self.encode_feat_key(feat1, dec1[-1], 1)
feat_k2 = self.encode_feat_key(feat2, dec2[-1], 2)
##### Memory update
cur_v = self.encode_cur_value(res1, dec1, pos1, shape1)
sp_mem.add_mem_check(feat_k1, cur_v+feat_k1)
res2['pts3d_in_other_view'] = res2.pop('pts3d')
if preds is None:
preds = [res1]
preds_all = [(res1, res2)]
else:
res1['pts3d_in_other_view'] = res1.pop('pts3d')
preds.append(res1)
preds_all.append((res1, res2))
if len(idx_todo) == 0:
break
preds.append(res2)
return preds, preds_all, idx_used
def forward(self, frames, return_memory=False):
if self.training:
sp_mem = SpatialMemory(self.norm_q, self.norm_k, self.norm_v, mem_dropout=self.mem_dropout, attn_thresh=0)
else:
sp_mem = SpatialMemory(self.norm_q, self.norm_k, self.norm_v)
feat1, feat2, pos1, pos2, shape1, shape2 = None, None, None, None, None, None
feat_k1, feat_k2 = None, None
preds = None
preds_all = []
for i in range(len(frames)):
if i == len(frames)-1:
break
view1 = frames[i]
view2 = frames[(i+1)]
##### Encode frames
# feat1: [bs, p=196, c=1024]
feat1, feat2, pos1, pos2, shape1, shape2 = self.encode_frames(view1, view2, feat1, feat2, pos1, pos2, shape1, shape2)
##### Memory readout
if feat_k2 is not None:
feat_fuse = sp_mem.memory_read(feat_k2, res=True)
# feat_fuse = feat_fuse + feat1
else:
feat_fuse = feat1
##### Decode features
# dec1[-1]: [bs, p, c=768]
dec1, dec2 = self.decode(feat_fuse, pos1, feat2, pos2)
##### Encode feat key
feat_k1 = self.encode_feat_key(feat1, dec1[-1], 1)
feat_k2 = self.encode_feat_key(feat2, dec2[-1], 2)
##### Regress pointmaps
with torch.cuda.amp.autocast(enabled=False):
res1 = self.downstream_head(dec1, shape1, 1)
res2 = self.downstream_head(dec2, shape2, 2)
##### Memory update
cur_v = self.encode_cur_value(res1, dec1, pos1, shape1)
if self.training:
sp_mem.add_mem(feat_k1, cur_v+feat_k1)
else:
sp_mem.add_mem_check(feat_k1, cur_v+feat_k1)
res2['pts3d_in_other_view'] = res2.pop('pts3d')
if preds is None:
preds = [res1]
preds_all = [(res1, res2)]
else:
res1['pts3d_in_other_view'] = res1.pop('pts3d')
preds.append(res1)
preds_all.append((res1, res2))
preds.append(res2)
if return_memory:
return preds, preds_all, sp_mem
return preds, preds_all
|