File size: 27,765 Bytes
3f01a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9b58ad
3f01a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
import gradio as gr
from examples.story_examples import get_examples
import spaces
import numpy as np
import torch
import random
import os
import torch.nn.functional as F
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
import copy
from huggingface_hub import hf_hub_download
from diffusers.utils import load_image

from storyDiffusion.utils.gradio_utils import AttnProcessor2_0 as AttnProcessor, cal_attn_mask_xl
from storyDiffusion.utils import PhotoMakerStableDiffusionXLPipeline
from storyDiffusion.utils.utils import get_comic
from storyDiffusion.utils.style_template import styles


# Constants
image_encoder_path = "./data/models/ip_adapter/sdxl_models/image_encoder"
ip_ckpt = "./data/models/ip_adapter/sdxl_models/ip-adapter_sdxl_vit-h.bin"
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Japanese Anime"
MAX_SEED = np.iinfo(np.int32).max

# Global variables
global models_dict, use_va, photomaker_path, pipe2, pipe4, attn_count, total_count, id_length, total_length, cur_step, cur_model_type, write, sa32, sa64, height, width, attn_procs, unet, num_steps

models_dict = {
    "RealVision": "SG161222/RealVisXL_V4.0",
    "Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y"
}
use_va = True
photomaker_path = hf_hub_download(
    repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")
device = "cuda"

# Functions


def setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True


def set_text_unfinished():
    return gr.update(visible=True, value="<h3>(Not Finished) Generating ···  The intermediate results will be shown.</h3>")


def set_text_finished():
    return gr.update(visible=True, value="<h3>Generation Finished</h3>")


class SpatialAttnProcessor2_0(torch.nn.Module):
    r"""
    Attention processor for IP-Adapater for PyTorch 2.0.
    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
        text_context_len (`int`, defaults to 77):
            The context length of the text features.
        scale (`float`, defaults to 1.0):
            the weight scale of image prompt.
    """

    def __init__(self, hidden_size=None, cross_attention_dim=None, id_length=4, device="cuda", dtype=torch.float16):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
        self.device = device
        self.dtype = dtype
        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.total_length = id_length + 1
        self.id_length = id_length
        self.id_bank = {}

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None,
            temb=None):
        # un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
        # un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
        # 生成一个0到1之间的随机数
        global total_count, attn_count, cur_step, mask1024, mask4096
        global sa32, sa64
        global write
        global height, width
        global num_steps
        if write:
            # print(f"white:{cur_step}")
            self.id_bank[cur_step] = [
                hidden_states[:self.id_length], hidden_states[self.id_length:]]
        else:
            encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(
                self.device), hidden_states[:1], self.id_bank[cur_step][1].to(self.device), hidden_states[1:]))
        # 判断随机数是否大于0.5
        if cur_step <= 1:
            hidden_states = self.__call2__(
                attn, hidden_states, None, attention_mask, temb)
        else:   # 256 1024 4096
            random_number = random.random()
            if cur_step < 0.4 * num_steps:
                rand_num = 0.3
            else:
                rand_num = 0.1
            # print(f"hidden state shape {hidden_states.shape[1]}")
            if random_number > rand_num:
                # print("mask shape",mask1024.shape,mask4096.shape)
                if not write:
                    if hidden_states.shape[1] == (height//32) * (width//32):
                        attention_mask = mask1024[mask1024.shape[0] //
                                                  self.total_length * self.id_length:]
                    else:
                        attention_mask = mask4096[mask4096.shape[0] //
                                                  self.total_length * self.id_length:]
                else:
                    # print(self.total_length,self.id_length,hidden_states.shape,(height//32) * (width//32))
                    if hidden_states.shape[1] == (height//32) * (width//32):
                        attention_mask = mask1024[:mask1024.shape[0] // self.total_length *
                                                  self.id_length, :mask1024.shape[0] // self.total_length * self.id_length]
                    else:
                        attention_mask = mask4096[:mask4096.shape[0] // self.total_length *
                                                  self.id_length, :mask4096.shape[0] // self.total_length * self.id_length]
                   # print(attention_mask.shape)
                # print("before attention",hidden_states.shape,attention_mask.shape,encoder_hidden_states.shape if encoder_hidden_states is not None else "None")
                hidden_states = self.__call1__(
                    attn, hidden_states, encoder_hidden_states, attention_mask, temb)
            else:
                hidden_states = self.__call2__(
                    attn, hidden_states, None, attention_mask, temb)
        attn_count += 1
        if attn_count == total_count:
            attn_count = 0
            cur_step += 1
            mask1024, mask4096 = cal_attn_mask_xl(
                self.total_length, self.id_length, sa32, sa64, height, width, device=self.device, dtype=self.dtype)

        return hidden_states

    def __call1__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):
        # print("hidden state shape",hidden_states.shape,self.id_length)
        residual = hidden_states
        # if encoder_hidden_states is not None:
        #     raise Exception("not implement")
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            total_batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                total_batch_size, channel, height * width).transpose(1, 2)
        total_batch_size, nums_token, channel = hidden_states.shape
        img_nums = total_batch_size//2
        hidden_states = hidden_states.view(-1, img_nums, nums_token,
                                           channel).reshape(-1, img_nums * nums_token, channel)

        batch_size, sequence_length, _ = hidden_states.shape

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(
                hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states  # B, N, C
        else:
            encoder_hidden_states = encoder_hidden_states.view(
                -1, self.id_length+1, nums_token, channel).reshape(-1, (self.id_length+1) * nums_token, channel)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads,
                           head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads,
                           head_dim).transpose(1, 2)
        # print(key.shape,value.shape,query.shape,attention_mask.shape)
        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        # print(query.shape,key.shape,value.shape,attention_mask.shape)
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(
            total_batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        # if input_ndim == 4:
        #     tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # if attn.residual_connection:
        #     tile_hidden_states = tile_hidden_states + residual

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                total_batch_size, channel, height, width)
        if attn.residual_connection:
            hidden_states = hidden_states + residual
        hidden_states = hidden_states / attn.rescale_output_factor
        # print(hidden_states.shape)
        return hidden_states

    def __call2__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None,
            temb=None):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, channel = (
            hidden_states.shape
        )
        # print(hidden_states.shape)
        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(
                attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(
                batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(
                hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states  # B, N, C
        else:
            encoder_hidden_states = encoder_hidden_states.view(
                -1, self.id_length+1, sequence_length, channel).reshape(-1, (self.id_length+1) * sequence_length, channel)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads,
                           head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads,
                           head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(
                -1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


def set_attention_processor(unet, id_length, is_ipadapter=False):
    global total_count
    total_count = 0
    attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = None if name.endswith(
            "attn1.processor") else unet.config.cross_attention_dim
        if cross_attention_dim is None:
            if name.startswith("up_blocks"):
                attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length)
                total_count += 1
            else:
                attn_procs[name] = AttnProcessor()
        else:
            attn_procs[name] = AttnProcessor()

    unet.set_attn_processor(copy.deepcopy(attn_procs))
    print("Successfully loaded paired self-attention")
    print(f"Number of processors: {total_count}")


attn_count = 0
total_count = 0
cur_step = 0
id_length = 4
total_length = 5
cur_model_type = ""
device = "cuda"
attn_procs = {}
write = False
sa32 = 0.5
sa64 = 0.5
height = 768
width = 768


def swap_to_gallery(images):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)


def upload_example_to_gallery(images, prompt, style, negative_prompt):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)


def remove_back_to_files():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)


def remove_tips():
    return gr.update(visible=False)


def apply_style_positive(style_name: str, positive: str):
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive)


def apply_style(style_name: str, positives: list, negative: str = ""):
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return [p.replace("{prompt}", positive) for positive in positives], n + ' ' + negative


def change_visiale_by_model_type(_model_type):
    if _model_type == "Only Using Textual Description":
        return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    elif _model_type == "Using Ref Images":
        return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
    else:
        raise ValueError("Invalid model type", _model_type)


@spaces.GPU(duration=120)
def process_generation(_sd_type, _model_type, _upload_images, _num_steps, style_name, _Ip_Adapter_Strength, _style_strength_ratio, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array, G_height, G_width, _comic_type):
    global sa32, sa64, id_length, total_length, attn_procs, unet, cur_model_type, device, num_steps, write, cur_step, attn_count, height, width, pipe2, pipe4, sd_model_path, models_dict

    _model_type = "Photomaker" if _model_type == "Using Ref Images" else "original"
    if _model_type == "Photomaker" and "img" not in general_prompt:
        raise gr.Error(
            "Please add the trigger word 'img' behind the class word you want to customize, such as: man img or woman img")
    if _upload_images is None and _model_type != "original":
        raise gr.Error("Cannot find any input face image!")
    if len(prompt_array.splitlines()) > 10:
        raise gr.Error(
            f"No more than 10 prompts in Hugging Face demo for speed! But found {len(prompt_array.splitlines())} prompts!")

    height = G_height
    width = G_width
    sd_model_path = models_dict[_sd_type]
    num_steps = _num_steps

    if style_name == "(No style)":
        sd_model_path = models_dict["RealVision"]

    if _model_type == "original":
        pipe = StableDiffusionXLPipeline.from_pretrained(
            sd_model_path, torch_dtype=torch.float16)
        pipe = pipe.to(device)
        pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
        set_attention_processor(pipe.unet, id_length_, is_ipadapter=False)
    elif _model_type == "Photomaker":
        if _sd_type != "RealVision" and style_name != "(No style)":
            pipe = pipe2.to(device)
            pipe.id_encoder.to(device)
            set_attention_processor(pipe.unet, id_length_, is_ipadapter=False)
        else:
            pipe = pipe4.to(device)
            pipe.id_encoder.to(device)
            set_attention_processor(pipe.unet, id_length_, is_ipadapter=False)
    else:
        raise NotImplementedError(
            "You should choose between original and Photomaker!", f"But you chose {_model_type}")

    pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
    pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
    cur_model_type = _sd_type + "-" + _model_type + str(id_length_)

    if _model_type != "original":
        input_id_images = [load_image(img) for img in _upload_images]

    prompts = prompt_array.splitlines()
    start_merge_step = int(float(_style_strength_ratio) / 100 * _num_steps)
    if start_merge_step > 30:
        start_merge_step = 30
    print(f"start_merge_step: {start_merge_step}")

    generator = torch.Generator(device="cuda").manual_seed(seed_)
    sa32, sa64 = sa32_, sa64_
    id_length = id_length_
    clipped_prompts = prompts[:]
    prompts = [general_prompt + "," + prompt if "[NC]" not in prompt else prompt.replace(
        "[NC]", "") for prompt in clipped_prompts]
    prompts = [prompt.rpartition(
        '#')[0] if "#" in prompt else prompt for prompt in prompts]
    print(prompts)

    id_prompts = prompts[:id_length]
    real_prompts = prompts[id_length:]
    torch.cuda.empty_cache()
    write = True
    cur_step = 0

    attn_count = 0
    id_prompts, negative_prompt = apply_style(
        style_name, id_prompts, negative_prompt)
    setup_seed(seed_)
    total_results = []

    if _model_type == "original":
        id_images = pipe(id_prompts, num_inference_steps=_num_steps, guidance_scale=guidance_scale,
                         height=height, width=width, negative_prompt=negative_prompt, generator=generator).images
    elif _model_type == "Photomaker":
        id_images = pipe(id_prompts, input_id_images=input_id_images, num_inference_steps=_num_steps, guidance_scale=guidance_scale,
                         start_merge_step=start_merge_step, height=height, width=width, negative_prompt=negative_prompt, generator=generator).images
    else:
        raise NotImplementedError(
            "You should choose between original and Photomaker!", f"But you chose {_model_type}")

    total_results = id_images + total_results
    yield total_results

    real_images = []
    write = False
    for real_prompt in real_prompts:
        setup_seed(seed_)
        cur_step = 0
        real_prompt = apply_style_positive(style_name, real_prompt)
        if _model_type == "original":
            real_images.append(pipe(real_prompt, num_inference_steps=_num_steps, guidance_scale=guidance_scale,
                               height=height, width=width, negative_prompt=negative_prompt, generator=generator).images[0])
        elif _model_type == "Photomaker":
            real_images.append(pipe(real_prompt, input_id_images=input_id_images, num_inference_steps=_num_steps, guidance_scale=guidance_scale,
                               start_merge_step=start_merge_step, height=height, width=width, negative_prompt=negative_prompt, generator=generator).images[0])
        else:
            raise NotImplementedError(
                "You should choose between original and Photomaker!", f"But you chose {_model_type}")
        total_results = [real_images[-1]] + total_results
        yield total_results

    if _comic_type != "No typesetting (default)":
        from PIL import ImageFont
        captions = prompt_array.splitlines()
        captions = [caption.replace("[NC]", "") for caption in captions]
        captions = [caption.split(
            '#')[-1] if "#" in caption else caption for caption in captions]
        total_results = get_comic(id_images + real_images, _comic_type, captions=captions,
                                  font=ImageFont.truetype("./storyDiffusion/fonts/Inkfree.ttf", int(45))) + total_results

    if _model_type == "Photomaker":
        pipe = pipe2.to("cpu")
        pipe.id_encoder.to("cpu")
        set_attention_processor(pipe.unet, id_length_, is_ipadapter=False)

    yield total_results


# Initialize pipelines
pipe2 = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
    models_dict["Unstable"], torch_dtype=torch.float16, use_safetensors=False)
pipe2 = pipe2.to("cpu")
pipe2.load_photomaker_adapter(
    os.path.dirname(photomaker_path),
    subfolder="",
    weight_name=os.path.basename(photomaker_path),
    trigger_word="img"
)
pipe2 = pipe2.to("cpu")
pipe2.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
pipe2.fuse_lora()

pipe4 = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
    models_dict["RealVision"], torch_dtype=torch.float16, use_safetensors=True)
pipe4 = pipe4.to("cpu")
pipe4.load_photomaker_adapter(
    os.path.dirname(photomaker_path),
    subfolder="",
    weight_name=os.path.basename(photomaker_path),
    trigger_word="img"
)
pipe4 = pipe4.to("cpu")
pipe4.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
pipe4.fuse_lora()


def story_generation_ui():
    with gr.Row():
        with gr.Group(elem_id="main-image"):
            prompts = []
            colors = []
            with gr.Column(visible=True) as gen_prompt_vis:
                sd_type = gr.Dropdown(choices=list(models_dict.keys(
                )), value="Unstable", label="sd_type", info="Select pretrained model")
                model_type = gr.Radio(["Only Using Textual Description", "Using Ref Images"], label="model_type",
                                      value="Only Using Textual Description", info="Control type of the Character")
                with gr.Group(visible=False) as control_image_input:
                    files = gr.Files(
                        label="Drag (Select) 1 or more photos of your face",
                        file_types=["image"],
                    )
                    uploaded_files = gr.Gallery(
                        label="Your images", visible=False, columns=5, rows=1, height=200)
                    with gr.Column(visible=False) as clear_button:
                        remove_and_reupload = gr.ClearButton(
                            value="Remove and upload new ones", components=files, size="sm")
                general_prompt = gr.Textbox(
                    value='', label="(1) Textual Description for Character", interactive=True)
                negative_prompt = gr.Textbox(
                    value='', label="(2) Negative_prompt", interactive=True)
                style = gr.Dropdown(
                    label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
                prompt_array = gr.Textbox(
                    lines=3, value='', label="(3) Comic Description (each line corresponds to a frame).", interactive=True)
                with gr.Accordion("(4) Tune the hyperparameters", open=False):
                    sa32_ = gr.Slider(label="(The degree of Paired Attention at 32 x 32 self-attention layers)",
                                      minimum=0, maximum=1., value=0.7, step=0.1)
                    sa64_ = gr.Slider(label="(The degree of Paired Attention at 64 x 64 self-attention layers)",
                                      minimum=0, maximum=1., value=0.7, step=0.1)
                    id_length_ = gr.Slider(
                        label="Number of id images in total images", minimum=2, maximum=4, value=3, step=1)
                    seed_ = gr.Slider(label="Seed", minimum=-1,
                                      maximum=MAX_SEED, value=0, step=1)
                    num_steps = gr.Slider(
                        label="Number of sample steps",
                        minimum=25,
                        maximum=50,
                        step=1,
                        value=50,
                    )
                    G_height = gr.Slider(
                        label="height",
                        minimum=256,
                        maximum=1024,
                        step=32,
                        value=1024,
                    )
                    G_width = gr.Slider(
                        label="width",
                        minimum=256,
                        maximum=1024,
                        step=32,
                        value=1024,
                    )
                    comic_type = gr.Radio(["No typesetting (default)", "Four Pannel", "Classic Comic Style"],
                                          value="Classic Comic Style", label="Typesetting Style", info="Select the typesetting style ")
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.1,
                        maximum=10.0,
                        step=0.1,
                        value=5,
                    )
                    style_strength_ratio = gr.Slider(
                        label="Style strength of Ref Image (%)",
                        minimum=15,
                        maximum=50,
                        step=1,
                        value=20,
                        visible=False
                    )
                    Ip_Adapter_Strength = gr.Slider(
                        label="Ip_Adapter_Strength",
                        minimum=0,
                        maximum=1,
                        step=0.1,
                        value=0.5,
                        visible=False
                    )
                final_run_btn = gr.Button("Generate ! 😺")

        with gr.Column():
            out_image = gr.Gallery(label="Result", columns=2, height='auto')
            generated_information = gr.Markdown(
                label="Generation Details", value="", visible=False)

    model_type.change(fn=change_visiale_by_model_type, inputs=model_type, outputs=[
                      control_image_input, style_strength_ratio, Ip_Adapter_Strength])
    files.upload(fn=swap_to_gallery, inputs=files, outputs=[
                 uploaded_files, clear_button, files])
    remove_and_reupload.click(fn=remove_back_to_files, outputs=[
                              uploaded_files, clear_button, files])

    final_run_btn.click(fn=set_text_unfinished, outputs=generated_information
                        ).then(process_generation, inputs=[sd_type, model_type, files, num_steps, style, Ip_Adapter_Strength, style_strength_ratio, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array, G_height, G_width, comic_type], outputs=out_image
                               ).then(fn=set_text_finished, outputs=generated_information)

    gr.Examples(
        examples=get_examples(),
        inputs=[seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt,
                prompt_array, style, model_type, files, G_height, G_width],
        label='😺 Examples 😺',
    )