Spaces:
Running
Running
File size: 7,549 Bytes
761f4da 96705f2 2587bd0 96705f2 0c2700d 961c5fc 197af76 8ced839 0c2700d d5de1e1 0c2700d 961c5fc 761f4da 7dfcf08 d0d585b 8ced839 197af76 8ced839 378962d 4b7f0df 378962d 0c2700d 961c5fc 0c2700d 96705f2 b45a874 197af76 e4c9916 8ced839 e4c9916 d0d585b e4c9916 d0d585b 0c2700d 96705f2 0c2700d 96705f2 9e3243b 96705f2 761f4da 96705f2 961c5fc 89a385f 378962d 4b7f0df 378962d 4b7f0df 378962d 96705f2 c8aa6df 35d42b9 f97c524 96705f2 0c2700d 78eae32 961c5fc 20429ec 378962d 961c5fc 20429ec 961c5fc 7dfcf08 378962d 96705f2 0c2700d c2343d1 761f4da 0c2700d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import gradio as gr
import os
import cv2
import face_recognition
from fastai.vision.all import load_learner
import time
import base64
from deepface import DeepFace
import torchaudio
import moviepy.editor as mp
from transformers import WhisperProcessor, WhisperForConditionalGeneration, pipeline
# import pathlib
# temp = pathlib.PosixPath
# pathlib.PosixPath = pathlib.WindowsPath
backends = [
'opencv',
'ssd',
'dlib',
'mtcnn',
'retinaface',
'mediapipe'
]
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
model = load_learner("gaze-recognizer-v3.pkl")
def analyze_emotion(text):
result = emotion_pipeline(text)
return result
def analyze_sentiment(text):
result = sentiment_pipeline(text)
return result
def getTranscription(path):
# Insert Local Video File Path
clip = mp.VideoFileClip(path)
# Insert Local Audio File Path
clip.audio.write_audiofile(r"audio.wav")
waveform, sample_rate = torchaudio.load("audio.wav")
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
waveform = resampler(waveform)[0]
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
model.config.forced_decoder_ids = None
input_features = processor(waveform.squeeze(dim=0), return_tensors="pt").input_features
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
return transcription[0]
def process_frame(frame):
# Convert the frame to RGB color (face_recognition uses RGB)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Find all the faces in the frame using a pre-trained convolutional neural network.
face_locations = face_recognition.face_locations(gray)
#face_locations = face_recognition.face_locations(gray, number_of_times_to_upsample=0, model="cnn")
if len(face_locations) > 0:
# Show the original frame with face rectangles drawn around the faces
for top, right, bottom, left in face_locations:
# cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
face_image = gray[top:bottom, left:right]
color_image = frame[top:bottom, left:right]
# Resize the face image to the desired size
resized_face_image = cv2.resize(face_image, (128,128))
try:
emotion = DeepFace.analyze(color_image,actions=['emotion'],detector_backend = backends[2],enforce_detection = False)# 2,3, 4 works
emotion_count += 1
print(emotion)
except Exception as e:
emotion = 0
pass
# Predict the class of the resized face image using the model
result = model.predict(resized_face_image)
print(result[0])
return result[0], emotion
def video_processing(video_file, encoded_video):
angry = 0
disgust = 0
fear = 0
happy = 0
sad = 0
surprise = 0
neutral = 0
emotion_count = 0
if encoded_video != "":
decoded_file_data = base64.b64decode(encoded_video)
with open("temp_video.mp4", "wb") as f:
f.write(decoded_file_data)
video_file = "temp_video.mp4"
start_time = time.time()
transcription = getTranscription(video_file)
print(transcription)
text_emotion = analyze_emotion(transcription)
print(text_emotion)
text_sentiment = analyze_sentiment(transcription)
print(text_sentiment)
video_capture = cv2.VideoCapture(video_file)
on_camera = 0
off_camera = 0
total = 0
while True:
# Read a single frame from the video
for i in range(24*3):
ret, frame = video_capture.read()
if not ret:
break
# If there are no more frames, break out of the loop
if not ret:
break
result, emotion = process_frame(frame)
print(emotion)
if result:
if result == 'on_camera':
on_camera += 1
elif result == 'off_camera':
off_camera += 1
total += 1
if emotion != 0:
# print(emotion[0]['emotion'])
angry += emotion[0]['emotion']['angry']
disgust += emotion[0]['emotion']['disgust']
fear += emotion[0]['emotion']['fear']
happy += emotion[0]['emotion']['happy']
sad += emotion[0]['emotion']['sad']
surprise += emotion[0]['emotion']['surprise']
neutral += emotion[0]['emotion']['neutral']
try:
# your processing code here
gaze_percentage = on_camera / total * 100
except Exception as e:
print(f"An error occurred while processing the video: {e}")
gaze_percentage = f'no face detected Total = {total},on_camera = {on_camera},off_camera = {off_camera}'
print(f'Total = {total},on_camera = {on_camera},off_camera = {off_camera}')
# print(f'focus perfectage = {on_camera/total*100}')
# Release the video capture object and close all windows
video_capture.release()
cv2.destroyAllWindows()
end_time = time.time()
print(f'Time taken: {end_time-start_time}')
if os.path.exists("temp_video.mp4"):
os.remove("temp_video.mp4")
print(gaze_percentage)
angry = angry / emotion_count
disgust = disgust / emotion_count
fear = fear / emotion_count
happy = happy / emotion_count
sad = sad / emotion_count
surprise = surprise / emotion_count
neutral = neutral / emotion_count
emotion = {
'angry': angry,
'disgust': disgust,
'fear': fear,
'happy': happy,
'sad': sad,
'surprise': surprise,
'neutral': neutral
},
final_result_dict = {
"gaze_percentage" : gaze_percentage,
"face_emotion" : emotion,
"text_emotion" : text_emotion,
"transcription" : transcription,
"text_sentiment" : text_sentiment
}
# angry = 'total anger percentage' + str(angry)
# disgust = 'total disgust percentage' + str(disgust)
# fear = 'total fear percentage' + str(fear)
# happy = 'total happy percentage' + str(happy)
# sad = 'total sad percentage' + str(sad)
# surprise = 'total surprise percentage' + str(surprise)
# neutral = 'total neutral percentage' + str(neutral)
print(f'total anger percentage = {angry}')
print(f'total disgust percentage = {disgust}')
print(f'total fear percentage = {fear}')
print(f'total happy percentage = {happy}')
print(f'total sad percentage = {sad}')
print(f'total surprise percentage = {surprise}')
print(f'total neutral percentage = {neutral}')
final_result = "Gaze = "+str(gaze_percentage)+"\nFace Emotion = "+str(emotion)+"\nText Emotion = "+str(text_emotion)+"\nText transcription = "+str(transcription)+"\nText sentiment = "+str(text_sentiment)
return final_result_dict
demo = gr.Interface(fn=video_processing,
inputs=["video", "text"],
outputs="json")
if __name__ == "__main__":
demo.launch() |