File size: 5,129 Bytes
761f4da
 
96705f2
 
2587bd0
96705f2
0c2700d
961c5fc
0c2700d
d5de1e1
 
 
0c2700d
961c5fc
 
 
 
 
 
 
 
761f4da
4d29448
761f4da
0c2700d
961c5fc
 
 
 
 
 
 
 
0c2700d
 
 
 
 
 
 
 
 
 
96705f2
0c2700d
 
96705f2
 
 
0c2700d
96705f2
 
9e3243b
96705f2
 
 
761f4da
96705f2
 
 
 
 
 
961c5fc
 
96705f2
761f4da
96705f2
 
 
 
 
 
 
 
 
961c5fc
96705f2
 
 
 
961c5fc
33bf45e
961c5fc
 
 
 
89a385f
 
 
 
 
 
 
 
 
96705f2
 
 
 
 
 
 
c8aa6df
 
 
 
 
35d42b9
f97c524
96705f2
 
 
 
 
 
0c2700d
 
78eae32
961c5fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96705f2
 
0c2700d
 
 
761f4da
 
0c2700d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import gradio as gr
import os
import cv2
import face_recognition
from fastai.vision.all import load_learner
import time
import base64
from deepface import DeepFace

# import pathlib
# temp = pathlib.PosixPath
# pathlib.PosixPath = pathlib.WindowsPath

backends = [
  'opencv', 
  'ssd', 
  'dlib', 
  'mtcnn', 
  'retinaface', 
  'mediapipe'
]

model = load_learner("gaze-recognizer-v3.pkl")

def video_processing(video_file, encoded_video):
    angry = 0
    disgust = 0
    fear = 0
    happy = 0
    sad = 0
    surprise = 0
    neutral = 0
    emotion_count = 0

    if encoded_video != "":
    
        decoded_file_data = base64.b64decode(encoded_video)

        with open("temp_video.mp4", "wb") as f:
            f.write(decoded_file_data)
        
        video_file = "temp_video.mp4"

    start_time = time.time()
    
    video_capture = cv2.VideoCapture(video_file)
    on_camera = 0
    off_camera = 0
    total = 0

    while True:
        # Read a single frame from the video
        for i in range(24*3):
            ret, frame = video_capture.read()
            if not ret:
                break

        # If there are no more frames, break out of the loop
        if not ret:
            break
        
        # Convert the frame to RGB color (face_recognition uses RGB)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        
        

        # Find all the faces in the frame using a pre-trained convolutional neural network.
        face_locations = face_recognition.face_locations(gray)
        #face_locations = face_recognition.face_locations(gray, number_of_times_to_upsample=0, model="cnn")

        if len(face_locations) > 0:
            # Show the original frame with face rectangles drawn around the faces
            for top, right, bottom, left in face_locations:
                # cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
                face_image = gray[top:bottom, left:right]
                color_image = frame[top:bottom, left:right]

                # Resize the face image to the desired size
                resized_face_image = cv2.resize(face_image, (128,128))

                try:
                    emotion = DeepFace.analyze(color_image,actions=['emotion'],detector_backend = backends[2],enforce_detection = False)# 2,3, 4 works
                    total_emotion += 1
                except Exception as e:
                    pass

                print(emotion[0]['emotion'])
                angry += emotion[0]['emotion']['angry']
                disgust += emotion[0]['emotion']['disgust']
                fear += emotion[0]['emotion']['fear']
                happy += emotion[0]['emotion']['happy']
                sad += emotion[0]['emotion']['sad']
                surprise += emotion[0]['emotion']['surprise']
                neutral += emotion[0]['emotion']['neutral']

                # Predict the class of the resized face image using the model
                result = model.predict(resized_face_image)
                print(result[0])
                if(result[0] == 'on_camera'): on_camera = on_camera + 1
                elif(result[0] == 'off_camera'): off_camera = off_camera + 1
                total = total + 1

    try:
        # your processing code here
        gaze_percentage = on_camera / total * 100
    except Exception as e:
        print(f"An error occurred while processing the video: {e}")
        gaze_percentage = f'no face detected Total = {total},on_camera = {on_camera},off_camera = {off_camera}'
    print(f'Total = {total},on_camera = {on_camera},off_camera = {off_camera}')
    # print(f'focus perfectage = {on_camera/total*100}')
    # Release the video capture object and close all windows
    video_capture.release()
    cv2.destroyAllWindows()
    end_time = time.time()
    print(f'Time taken: {end_time-start_time}')
    if os.path.exists("temp_video.mp4"): 
        os.remove("temp_video.mp4")
    print(gaze_percentage)

    angry = angry / emotion_count
    disgust = disgust / emotion_count
    fear = fear / emotion_count
    happy = happy / emotion_count
    sad = sad / emotion_count
    surprise = surprise / emotion_count
    neutral = neutral / emotion_count
    
    angry = 'total anger percentage' + angry 
    disgust = 'total disgust percentage' + disgust 
    fear = 'total fear percentage' + fear 
    happy = 'total happy percentage' + happy 
    sad = 'total sad percentage' + sad 
    surprise = 'total surprise percentage' + surprise
    neutral = 'total neutral percentage' + neutral 
    print(f'total anger percentage = {angry}')
    print(f'total disgust percentage = {disgust}')
    print(f'total fear percentage = {fear}')
    print(f'total happy percentage = {happy}')
    print(f'total sad percentage = {sad}')
    print(f'total surprise percentage = {surprise}')
    print(f'total neutral percentage = {neutral}')
    return str(gaze_percentage,angry,disgust,fear,happy,sad,surprise,neutral)


demo = gr.Interface(fn=video_processing,
                     inputs=["video", "text"],
                     outputs="text")

if __name__ == "__main__":
    demo.launch()