Spaces:
Runtime error
Runtime error
Commit
·
58f667f
0
Parent(s):
first commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +35 -0
- .gitignore +3 -0
- README.md +13 -0
- __pycache__/config.cpython-310.pyc +0 -0
- __pycache__/model.cpython-310.pyc +0 -0
- __pycache__/utils.cpython-310.pyc +0 -0
- _app.py +1360 -0
- annotator/__pycache__/util.cpython-310.pyc +0 -0
- annotator/__pycache__/util.cpython-38.pyc +0 -0
- annotator/blur/__init__.py +7 -0
- annotator/blur/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/blur/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/canny/__init__.py +16 -0
- annotator/canny/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/canny/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/ckpts/ckpts.txt +1 -0
- annotator/grayscale/__init__.py +5 -0
- annotator/grayscale/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/grayscale/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/hed/__init__.py +107 -0
- annotator/hed/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/hed/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/inpainting/__init__.py +16 -0
- annotator/inpainting/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/inpainting/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/midas/LICENSE +21 -0
- annotator/midas/__init__.py +52 -0
- annotator/midas/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/midas/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/midas/__pycache__/api.cpython-310.pyc +0 -0
- annotator/midas/__pycache__/api.cpython-38.pyc +0 -0
- annotator/midas/api.py +183 -0
- annotator/midas/midas/__init__.py +0 -0
- annotator/midas/midas/__pycache__/__init__.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/__init__.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/base_model.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/base_model.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/blocks.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/blocks.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/dpt_depth.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/dpt_depth.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/midas_net.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/midas_net.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/midas_net_custom.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/transforms.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/transforms.cpython-38.pyc +0 -0
- annotator/midas/midas/__pycache__/vit.cpython-310.pyc +0 -0
- annotator/midas/midas/__pycache__/vit.cpython-38.pyc +0 -0
- annotator/midas/midas/base_model.py +26 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
*.pt
|
2 |
+
*.pth
|
3 |
+
*.st
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: UniControl Demo
|
3 |
+
emoji: 📚
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.36.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/config.cpython-310.pyc
ADDED
Binary file (532 Bytes). View file
|
|
__pycache__/model.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
__pycache__/utils.cpython-310.pyc
ADDED
Binary file (4.46 kB). View file
|
|
_app.py
ADDED
@@ -0,0 +1,1360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
6 |
+
* By Can Qin
|
7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
9 |
+
'''
|
10 |
+
|
11 |
+
import config
|
12 |
+
|
13 |
+
import cv2
|
14 |
+
import einops
|
15 |
+
import gradio as gr
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
import random
|
19 |
+
import os
|
20 |
+
|
21 |
+
from pytorch_lightning import seed_everything
|
22 |
+
from annotator.util import resize_image, HWC3
|
23 |
+
from annotator.uniformer_base import UniformerDetector
|
24 |
+
from annotator.hed import HEDdetector
|
25 |
+
from annotator.canny import CannyDetector
|
26 |
+
from annotator.midas import MidasDetector
|
27 |
+
from annotator.outpainting import Outpainter
|
28 |
+
from annotator.openpose import OpenposeDetector
|
29 |
+
from annotator.inpainting import Inpainter
|
30 |
+
from annotator.grayscale import GrayscaleConverter
|
31 |
+
from annotator.blur import Blurrer
|
32 |
+
import cvlib as cv
|
33 |
+
|
34 |
+
from utils import create_model, load_state_dict
|
35 |
+
from lib.ddim_hacked import DDIMSampler
|
36 |
+
|
37 |
+
from safetensors.torch import load_file as stload
|
38 |
+
from collections import OrderedDict
|
39 |
+
|
40 |
+
apply_uniformer = UniformerDetector()
|
41 |
+
apply_midas = MidasDetector()
|
42 |
+
apply_canny = CannyDetector()
|
43 |
+
apply_hed = HEDdetector()
|
44 |
+
model_outpainting = Outpainter()
|
45 |
+
apply_openpose = OpenposeDetector()
|
46 |
+
model_grayscale = GrayscaleConverter()
|
47 |
+
model_blur = Blurrer()
|
48 |
+
model_inpainting = Inpainter()
|
49 |
+
|
50 |
+
|
51 |
+
def midas(img, res):
|
52 |
+
img = resize_image(HWC3(img), res)
|
53 |
+
results = apply_midas(img)
|
54 |
+
return results
|
55 |
+
|
56 |
+
|
57 |
+
def outpainting(img, res, height_top_extended, height_down_extended, width_left_extended, width_right_extended):
|
58 |
+
img = resize_image(HWC3(img), res)
|
59 |
+
result = model_outpainting(img, height_top_extended, height_down_extended, width_left_extended, width_right_extended)
|
60 |
+
return result
|
61 |
+
|
62 |
+
|
63 |
+
def grayscale(img, res):
|
64 |
+
img = resize_image(HWC3(img), res)
|
65 |
+
result = model_grayscale(img)
|
66 |
+
return result
|
67 |
+
|
68 |
+
|
69 |
+
def blur(img, res, ksize):
|
70 |
+
img = resize_image(HWC3(img), res)
|
71 |
+
result = model_blur(img, ksize)
|
72 |
+
return result
|
73 |
+
|
74 |
+
|
75 |
+
def inpainting(img, res, height_top_mask, height_down_mask, width_left_mask, width_right_mask):
|
76 |
+
img = resize_image(HWC3(img), res)
|
77 |
+
result = model_inpainting(img, height_top_mask, height_down_mask, width_left_mask, width_right_mask)
|
78 |
+
return result
|
79 |
+
|
80 |
+
model = create_model('./models/cldm_v15_unicontrol.yaml').cpu()
|
81 |
+
# model_url = 'https://huggingface.co/Robert001/UniControl-Model/resolve/main/unicontrol_v1.1.ckpt'
|
82 |
+
model_url = 'https://huggingface.co/Robert001/UniControl-Model/resolve/main/unicontrol_v1.1.st'
|
83 |
+
|
84 |
+
ckpts_path='./'
|
85 |
+
# model_path = os.path.join(ckpts_path, "unicontrol_v1.1.ckpt")
|
86 |
+
model_path = os.path.join(ckpts_path, "unicontrol_v1.1.st")
|
87 |
+
|
88 |
+
if not os.path.exists(model_path):
|
89 |
+
from basicsr.utils.download_util import load_file_from_url
|
90 |
+
load_file_from_url(model_url, model_dir=ckpts_path)
|
91 |
+
|
92 |
+
model_dict = OrderedDict(stload(model_path, device='cpu'))
|
93 |
+
model.load_state_dict(model_dict, strict=False)
|
94 |
+
# model.load_state_dict(load_state_dict(model_path, location='cuda'), strict=False)
|
95 |
+
model = model.cuda()
|
96 |
+
ddim_sampler = DDIMSampler(model)
|
97 |
+
|
98 |
+
task_to_name = {'hed': 'control_hed', 'canny': 'control_canny', 'seg': 'control_seg', 'segbase': 'control_seg',
|
99 |
+
'depth': 'control_depth', 'normal': 'control_normal', 'openpose': 'control_openpose',
|
100 |
+
'bbox': 'control_bbox', 'grayscale': 'control_grayscale', 'outpainting': 'control_outpainting',
|
101 |
+
'hedsketch': 'control_hedsketch', 'inpainting': 'control_inpainting', 'blur': 'control_blur',
|
102 |
+
'grayscale': 'control_grayscale'}
|
103 |
+
|
104 |
+
name_to_instruction = {"control_hed": "hed edge to image", "control_canny": "canny edge to image",
|
105 |
+
"control_seg": "segmentation map to image", "control_depth": "depth map to image",
|
106 |
+
"control_normal": "normal surface map to image", "control_img": "image editing",
|
107 |
+
"control_openpose": "human pose skeleton to image", "control_hedsketch": "sketch to image",
|
108 |
+
"control_bbox": "bounding box to image", "control_outpainting": "image outpainting",
|
109 |
+
"control_grayscale": "gray image to color image", "control_blur": "deblur image to clean image",
|
110 |
+
"control_inpainting": "image inpainting"}
|
111 |
+
|
112 |
+
|
113 |
+
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
114 |
+
strength, scale, seed, eta, low_threshold, high_threshold, condition_mode):
|
115 |
+
with torch.no_grad():
|
116 |
+
img = resize_image(HWC3(input_image), image_resolution)
|
117 |
+
H, W, C = img.shape
|
118 |
+
if condition_mode == True:
|
119 |
+
detected_map = apply_canny(img, low_threshold, high_threshold)
|
120 |
+
detected_map = HWC3(detected_map)
|
121 |
+
else:
|
122 |
+
detected_map = 255 - img
|
123 |
+
|
124 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
125 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
126 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
127 |
+
|
128 |
+
if seed == -1:
|
129 |
+
seed = random.randint(0, 65535)
|
130 |
+
seed_everything(seed)
|
131 |
+
|
132 |
+
if config.save_memory:
|
133 |
+
model.low_vram_shift(is_diffusing=False)
|
134 |
+
task = 'canny'
|
135 |
+
task_dic = {}
|
136 |
+
task_dic['name'] = task_to_name[task]
|
137 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
138 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
139 |
+
|
140 |
+
cond = {"c_concat": [control],
|
141 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
142 |
+
"task": task_dic}
|
143 |
+
|
144 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
145 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
146 |
+
shape = (4, H // 8, W // 8)
|
147 |
+
|
148 |
+
if config.save_memory:
|
149 |
+
model.low_vram_shift(is_diffusing=True)
|
150 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)
|
151 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
152 |
+
shape, cond, verbose=False, eta=eta,
|
153 |
+
unconditional_guidance_scale=scale,
|
154 |
+
unconditional_conditioning=un_cond)
|
155 |
+
|
156 |
+
if config.save_memory:
|
157 |
+
model.low_vram_shift(is_diffusing=False)
|
158 |
+
|
159 |
+
x_samples = model.decode_first_stage(samples)
|
160 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
161 |
+
255).astype(
|
162 |
+
np.uint8)
|
163 |
+
|
164 |
+
results = [x_samples[i] for i in range(num_samples)]
|
165 |
+
return [255 - detected_map] + results
|
166 |
+
|
167 |
+
|
168 |
+
def process_hed(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps,
|
169 |
+
guess_mode, strength, scale, seed, eta, condition_mode):
|
170 |
+
with torch.no_grad():
|
171 |
+
input_image = HWC3(input_image)
|
172 |
+
img = resize_image(input_image, image_resolution)
|
173 |
+
H, W, C = img.shape
|
174 |
+
if condition_mode == True:
|
175 |
+
detected_map = apply_hed(resize_image(input_image, detect_resolution))
|
176 |
+
detected_map = HWC3(detected_map)
|
177 |
+
else:
|
178 |
+
detected_map = img
|
179 |
+
|
180 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
181 |
+
|
182 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
183 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
184 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
185 |
+
|
186 |
+
if seed == -1:
|
187 |
+
seed = random.randint(0, 65535)
|
188 |
+
seed_everything(seed)
|
189 |
+
|
190 |
+
if config.save_memory:
|
191 |
+
model.low_vram_shift(is_diffusing=False)
|
192 |
+
|
193 |
+
task = 'hed'
|
194 |
+
task_dic = {}
|
195 |
+
task_dic['name'] = task_to_name[task]
|
196 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
197 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
198 |
+
|
199 |
+
cond = {"c_concat": [control],
|
200 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
201 |
+
"task": task_dic}
|
202 |
+
|
203 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
204 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
205 |
+
shape = (4, H // 8, W // 8)
|
206 |
+
|
207 |
+
if config.save_memory:
|
208 |
+
model.low_vram_shift(is_diffusing=True)
|
209 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)
|
210 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
211 |
+
shape, cond, verbose=False, eta=eta,
|
212 |
+
unconditional_guidance_scale=scale,
|
213 |
+
unconditional_conditioning=un_cond)
|
214 |
+
|
215 |
+
if config.save_memory:
|
216 |
+
model.low_vram_shift(is_diffusing=False)
|
217 |
+
|
218 |
+
x_samples = model.decode_first_stage(samples)
|
219 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
220 |
+
255).astype(
|
221 |
+
np.uint8)
|
222 |
+
|
223 |
+
results = [x_samples[i] for i in range(num_samples)]
|
224 |
+
return [detected_map] + results
|
225 |
+
|
226 |
+
|
227 |
+
def process_depth(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps,
|
228 |
+
guess_mode, strength, scale, seed, eta, condition_mode):
|
229 |
+
with torch.no_grad():
|
230 |
+
input_image = HWC3(input_image)
|
231 |
+
img = resize_image(input_image, image_resolution)
|
232 |
+
H, W, C = img.shape
|
233 |
+
if condition_mode == True:
|
234 |
+
detected_map, _ = apply_midas(resize_image(input_image, detect_resolution))
|
235 |
+
detected_map = HWC3(detected_map)
|
236 |
+
else:
|
237 |
+
detected_map = img
|
238 |
+
|
239 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
240 |
+
|
241 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
242 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
243 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
244 |
+
|
245 |
+
if seed == -1:
|
246 |
+
seed = random.randint(0, 65535)
|
247 |
+
seed_everything(seed)
|
248 |
+
|
249 |
+
if config.save_memory:
|
250 |
+
model.low_vram_shift(is_diffusing=False)
|
251 |
+
task = 'depth'
|
252 |
+
task_dic = {}
|
253 |
+
task_dic['name'] = task_to_name[task]
|
254 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
255 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
256 |
+
cond = {"c_concat": [control],
|
257 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
258 |
+
"task": task_dic}
|
259 |
+
|
260 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
261 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
262 |
+
shape = (4, H // 8, W // 8)
|
263 |
+
|
264 |
+
if config.save_memory:
|
265 |
+
model.low_vram_shift(is_diffusing=True)
|
266 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
267 |
+
[strength] * 13)
|
268 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
269 |
+
shape, cond, verbose=False, eta=eta,
|
270 |
+
unconditional_guidance_scale=scale,
|
271 |
+
unconditional_conditioning=un_cond)
|
272 |
+
|
273 |
+
if config.save_memory:
|
274 |
+
model.low_vram_shift(is_diffusing=False)
|
275 |
+
|
276 |
+
x_samples = model.decode_first_stage(samples)
|
277 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
278 |
+
255).astype(
|
279 |
+
np.uint8)
|
280 |
+
|
281 |
+
results = [x_samples[i] for i in range(num_samples)]
|
282 |
+
return [detected_map] + results
|
283 |
+
|
284 |
+
|
285 |
+
def process_normal(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
286 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode):
|
287 |
+
with torch.no_grad():
|
288 |
+
|
289 |
+
input_image = HWC3(input_image)
|
290 |
+
img = resize_image(input_image, image_resolution)
|
291 |
+
H, W, C = img.shape
|
292 |
+
if condition_mode == True:
|
293 |
+
_, detected_map = apply_midas(resize_image(input_image, detect_resolution))
|
294 |
+
detected_map = HWC3(detected_map)
|
295 |
+
else:
|
296 |
+
detected_map = img
|
297 |
+
|
298 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
299 |
+
|
300 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
301 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
302 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
303 |
+
|
304 |
+
if seed == -1:
|
305 |
+
seed = random.randint(0, 65535)
|
306 |
+
seed_everything(seed)
|
307 |
+
|
308 |
+
if config.save_memory:
|
309 |
+
model.low_vram_shift(is_diffusing=False)
|
310 |
+
task = 'normal'
|
311 |
+
task_dic = {}
|
312 |
+
task_dic['name'] = task_to_name[task]
|
313 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
314 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
315 |
+
cond = {"c_concat": [control],
|
316 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
317 |
+
"task": task_dic}
|
318 |
+
|
319 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
320 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
321 |
+
shape = (4, H // 8, W // 8)
|
322 |
+
|
323 |
+
if config.save_memory:
|
324 |
+
model.low_vram_shift(is_diffusing=True)
|
325 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
326 |
+
[strength] * 13)
|
327 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
328 |
+
shape, cond, verbose=False, eta=eta,
|
329 |
+
unconditional_guidance_scale=scale,
|
330 |
+
unconditional_conditioning=un_cond)
|
331 |
+
|
332 |
+
if config.save_memory:
|
333 |
+
model.low_vram_shift(is_diffusing=False)
|
334 |
+
|
335 |
+
x_samples = model.decode_first_stage(samples)
|
336 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
337 |
+
255).astype(
|
338 |
+
np.uint8)
|
339 |
+
|
340 |
+
results = [x_samples[i] for i in range(num_samples)]
|
341 |
+
return [detected_map] + results
|
342 |
+
|
343 |
+
|
344 |
+
def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps,
|
345 |
+
guess_mode, strength, scale, seed, eta, condition_mode):
|
346 |
+
with torch.no_grad():
|
347 |
+
input_image = HWC3(input_image)
|
348 |
+
img = resize_image(input_image, image_resolution)
|
349 |
+
H, W, C = img.shape
|
350 |
+
if condition_mode == True:
|
351 |
+
detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution))
|
352 |
+
detected_map = HWC3(detected_map)
|
353 |
+
else:
|
354 |
+
detected_map = img
|
355 |
+
|
356 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
|
357 |
+
|
358 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
359 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
360 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
361 |
+
|
362 |
+
if seed == -1:
|
363 |
+
seed = random.randint(0, 65535)
|
364 |
+
seed_everything(seed)
|
365 |
+
|
366 |
+
if config.save_memory:
|
367 |
+
model.low_vram_shift(is_diffusing=False)
|
368 |
+
task = 'openpose'
|
369 |
+
task_dic = {}
|
370 |
+
task_dic['name'] = task_to_name[task]
|
371 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
372 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
373 |
+
cond = {"c_concat": [control],
|
374 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
375 |
+
"task": task_dic}
|
376 |
+
|
377 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
378 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
379 |
+
shape = (4, H // 8, W // 8)
|
380 |
+
|
381 |
+
if config.save_memory:
|
382 |
+
model.low_vram_shift(is_diffusing=True)
|
383 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
384 |
+
[strength] * 13)
|
385 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
386 |
+
shape, cond, verbose=False, eta=eta,
|
387 |
+
unconditional_guidance_scale=scale,
|
388 |
+
unconditional_conditioning=un_cond)
|
389 |
+
|
390 |
+
if config.save_memory:
|
391 |
+
model.low_vram_shift(is_diffusing=False)
|
392 |
+
|
393 |
+
x_samples = model.decode_first_stage(samples)
|
394 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
395 |
+
255).astype(
|
396 |
+
np.uint8)
|
397 |
+
|
398 |
+
results = [x_samples[i] for i in range(num_samples)]
|
399 |
+
return [detected_map] + results
|
400 |
+
|
401 |
+
|
402 |
+
def process_seg(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps,
|
403 |
+
guess_mode, strength, scale, seed, eta, condition_mode):
|
404 |
+
with torch.no_grad():
|
405 |
+
input_image = HWC3(input_image)
|
406 |
+
img = resize_image(input_image, image_resolution)
|
407 |
+
H, W, C = img.shape
|
408 |
+
|
409 |
+
if condition_mode == True:
|
410 |
+
detected_map = apply_uniformer(resize_image(input_image, detect_resolution))
|
411 |
+
else:
|
412 |
+
detected_map = img
|
413 |
+
|
414 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
|
415 |
+
|
416 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
417 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
418 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
419 |
+
|
420 |
+
if seed == -1:
|
421 |
+
seed = random.randint(0, 65535)
|
422 |
+
seed_everything(seed)
|
423 |
+
|
424 |
+
if config.save_memory:
|
425 |
+
model.low_vram_shift(is_diffusing=False)
|
426 |
+
task = 'seg'
|
427 |
+
task_dic = {}
|
428 |
+
task_dic['name'] = task_to_name[task]
|
429 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
430 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
431 |
+
|
432 |
+
cond = {"c_concat": [control],
|
433 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
434 |
+
"task": task_dic}
|
435 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
436 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
437 |
+
shape = (4, H // 8, W // 8)
|
438 |
+
|
439 |
+
if config.save_memory:
|
440 |
+
model.low_vram_shift(is_diffusing=True)
|
441 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
442 |
+
[strength] * 13)
|
443 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
444 |
+
shape, cond, verbose=False, eta=eta,
|
445 |
+
unconditional_guidance_scale=scale,
|
446 |
+
unconditional_conditioning=un_cond)
|
447 |
+
|
448 |
+
if config.save_memory:
|
449 |
+
model.low_vram_shift(is_diffusing=False)
|
450 |
+
|
451 |
+
x_samples = model.decode_first_stage(samples)
|
452 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
453 |
+
255).astype(
|
454 |
+
np.uint8)
|
455 |
+
|
456 |
+
results = [x_samples[i] for i in range(num_samples)]
|
457 |
+
return [detected_map] + results
|
458 |
+
|
459 |
+
|
460 |
+
color_dict = {
|
461 |
+
'background': (0, 0, 100),
|
462 |
+
'person': (255, 0, 0),
|
463 |
+
'bicycle': (0, 255, 0),
|
464 |
+
'car': (0, 0, 255),
|
465 |
+
'motorcycle': (255, 255, 0),
|
466 |
+
'airplane': (255, 0, 255),
|
467 |
+
'bus': (0, 255, 255),
|
468 |
+
'train': (128, 128, 0),
|
469 |
+
'truck': (128, 0, 128),
|
470 |
+
'boat': (0, 128, 128),
|
471 |
+
'traffic light': (128, 128, 128),
|
472 |
+
'fire hydrant': (64, 0, 0),
|
473 |
+
'stop sign': (0, 64, 0),
|
474 |
+
'parking meter': (0, 0, 64),
|
475 |
+
'bench': (64, 64, 0),
|
476 |
+
'bird': (64, 0, 64),
|
477 |
+
'cat': (0, 64, 64),
|
478 |
+
'dog': (192, 192, 192),
|
479 |
+
'horse': (32, 32, 32),
|
480 |
+
'sheep': (96, 96, 96),
|
481 |
+
'cow': (160, 160, 160),
|
482 |
+
'elephant': (224, 224, 224),
|
483 |
+
'bear': (32, 0, 0),
|
484 |
+
'zebra': (0, 32, 0),
|
485 |
+
'giraffe': (0, 0, 32),
|
486 |
+
'backpack': (32, 32, 0),
|
487 |
+
'umbrella': (32, 0, 32),
|
488 |
+
'handbag': (0, 32, 32),
|
489 |
+
'tie': (96, 0, 0),
|
490 |
+
'suitcase': (0, 96, 0),
|
491 |
+
'frisbee': (0, 0, 96),
|
492 |
+
'skis': (96, 96, 0),
|
493 |
+
'snowboard': (96, 0, 96),
|
494 |
+
'sports ball': (0, 96, 96),
|
495 |
+
'kite': (160, 0, 0),
|
496 |
+
'baseball bat': (0, 160, 0),
|
497 |
+
'baseball glove': (0, 0, 160),
|
498 |
+
'skateboard': (160, 160, 0),
|
499 |
+
'surfboard': (160, 0, 160),
|
500 |
+
'tennis racket': (0, 160, 160),
|
501 |
+
'bottle': (224, 0, 0),
|
502 |
+
'wine glass': (0, 224, 0),
|
503 |
+
'cup': (0, 0, 224),
|
504 |
+
'fork': (224, 224, 0),
|
505 |
+
'knife': (224, 0, 224),
|
506 |
+
'spoon': (0, 224, 224),
|
507 |
+
'bowl': (64, 64, 64),
|
508 |
+
'banana': (128, 64, 64),
|
509 |
+
'apple': (64, 128, 64),
|
510 |
+
'sandwich': (64, 64, 128),
|
511 |
+
'orange': (128, 128, 64),
|
512 |
+
'broccoli': (128, 64, 128),
|
513 |
+
'carrot': (64, 128, 128),
|
514 |
+
'hot dog': (192, 64, 64),
|
515 |
+
'pizza': (64, 192, 64),
|
516 |
+
'donut': (64, 64, 192),
|
517 |
+
'cake': (192, 192, 64),
|
518 |
+
'chair': (192, 64, 192),
|
519 |
+
'couch': (64, 192, 192),
|
520 |
+
'potted plant': (96, 32, 32),
|
521 |
+
'bed': (32, 96, 32),
|
522 |
+
'dining table': (32, 32, 96),
|
523 |
+
'toilet': (96, 96, 32),
|
524 |
+
'tv': (96, 32, 96),
|
525 |
+
'laptop': (32, 96, 96),
|
526 |
+
'mouse': (160, 32, 32),
|
527 |
+
'remote': (32, 160, 32),
|
528 |
+
'keyboard': (32, 32, 160),
|
529 |
+
'cell phone': (160, 160, 32),
|
530 |
+
'microwave': (160, 32, 160),
|
531 |
+
'oven': (32, 160, 160),
|
532 |
+
'toaster': (224, 32, 32),
|
533 |
+
'sink': (32, 224, 32),
|
534 |
+
'refrigerator': (32, 32, 224),
|
535 |
+
'book': (224, 224, 32),
|
536 |
+
'clock': (224, 32, 224),
|
537 |
+
'vase': (32, 224, 224),
|
538 |
+
'scissors': (64, 96, 96),
|
539 |
+
'teddy bear': (96, 64, 96),
|
540 |
+
'hair drier': (96, 96, 64),
|
541 |
+
'toothbrush': (160, 96, 96)
|
542 |
+
}
|
543 |
+
|
544 |
+
|
545 |
+
def process_bbox(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
546 |
+
strength, scale, seed, eta, confidence, nms_thresh, condition_mode):
|
547 |
+
with torch.no_grad():
|
548 |
+
input_image = HWC3(input_image)
|
549 |
+
img = resize_image(input_image, image_resolution)
|
550 |
+
H, W, C = img.shape
|
551 |
+
|
552 |
+
if condition_mode == True:
|
553 |
+
bbox, label, conf = cv.detect_common_objects(input_image, confidence=confidence, nms_thresh=nms_thresh)
|
554 |
+
mask = np.zeros((input_image.shape), np.uint8)
|
555 |
+
if len(bbox) > 0:
|
556 |
+
order_area = np.zeros(len(bbox))
|
557 |
+
# order_final = np.arange(len(bbox))
|
558 |
+
area_all = 0
|
559 |
+
for idx_mask, box in enumerate(bbox):
|
560 |
+
x_1, y_1, x_2, y_2 = box
|
561 |
+
|
562 |
+
x_1 = 0 if x_1 < 0 else x_1
|
563 |
+
y_1 = 0 if y_1 < 0 else y_1
|
564 |
+
x_2 = input_image.shape[1] if x_2 < 0 else x_2
|
565 |
+
y_2 = input_image.shape[0] if y_2 < 0 else y_2
|
566 |
+
|
567 |
+
area = (x_2 - x_1) * (y_2 - y_1)
|
568 |
+
order_area[idx_mask] = area
|
569 |
+
area_all += area
|
570 |
+
ordered_area = np.argsort(-order_area)
|
571 |
+
|
572 |
+
for idx_mask in ordered_area:
|
573 |
+
box = bbox[idx_mask]
|
574 |
+
x_1, y_1, x_2, y_2 = box
|
575 |
+
x_1 = 0 if x_1 < 0 else x_1
|
576 |
+
y_1 = 0 if y_1 < 0 else y_1
|
577 |
+
x_2 = input_image.shape[1] if x_2 < 0 else x_2
|
578 |
+
y_2 = input_image.shape[0] if y_2 < 0 else y_2
|
579 |
+
|
580 |
+
mask[y_1:y_2, x_1:x_2, :] = color_dict[label[idx_mask]]
|
581 |
+
detected_map = mask
|
582 |
+
else:
|
583 |
+
detected_map = img
|
584 |
+
|
585 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
586 |
+
|
587 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
588 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
589 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
590 |
+
|
591 |
+
if seed == -1:
|
592 |
+
seed = random.randint(0, 65535)
|
593 |
+
seed_everything(seed)
|
594 |
+
|
595 |
+
if config.save_memory:
|
596 |
+
model.low_vram_shift(is_diffusing=False)
|
597 |
+
|
598 |
+
task = 'bbox'
|
599 |
+
task_dic = {}
|
600 |
+
task_dic['name'] = task_to_name[task]
|
601 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
602 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
603 |
+
|
604 |
+
cond = {"c_concat": [control],
|
605 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
606 |
+
"task": task_dic}
|
607 |
+
|
608 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
609 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
610 |
+
shape = (4, H // 8, W // 8)
|
611 |
+
|
612 |
+
if config.save_memory:
|
613 |
+
model.low_vram_shift(is_diffusing=True)
|
614 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
615 |
+
[strength] * 13)
|
616 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
617 |
+
shape, cond, verbose=False, eta=eta,
|
618 |
+
unconditional_guidance_scale=scale,
|
619 |
+
unconditional_conditioning=un_cond)
|
620 |
+
|
621 |
+
if config.save_memory:
|
622 |
+
model.low_vram_shift(is_diffusing=False)
|
623 |
+
|
624 |
+
x_samples = model.decode_first_stage(samples)
|
625 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
626 |
+
255).astype(
|
627 |
+
np.uint8)
|
628 |
+
|
629 |
+
results = [x_samples[i] for i in range(num_samples)]
|
630 |
+
return [detected_map] + results
|
631 |
+
|
632 |
+
|
633 |
+
def process_outpainting(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
634 |
+
strength, scale, seed, eta, height_top_extended, height_down_extended, width_left_extended, width_right_extended, condition_mode):
|
635 |
+
with torch.no_grad():
|
636 |
+
input_image = HWC3(input_image)
|
637 |
+
img = resize_image(input_image, image_resolution)
|
638 |
+
H, W, C = img.shape
|
639 |
+
if condition_mode == True:
|
640 |
+
detected_map = outpainting(input_image, image_resolution, height_top_extended, height_down_extended, width_left_extended, width_right_extended)
|
641 |
+
else:
|
642 |
+
detected_map = img
|
643 |
+
|
644 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
645 |
+
|
646 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
647 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
648 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
649 |
+
|
650 |
+
if seed == -1:
|
651 |
+
seed = random.randint(0, 65535)
|
652 |
+
seed_everything(seed)
|
653 |
+
|
654 |
+
if config.save_memory:
|
655 |
+
model.low_vram_shift(is_diffusing=False)
|
656 |
+
|
657 |
+
task = 'outpainting'
|
658 |
+
task_dic = {}
|
659 |
+
task_dic['name'] = task_to_name[task]
|
660 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
661 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
662 |
+
|
663 |
+
cond = {"c_concat": [control],
|
664 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
665 |
+
"task": task_dic}
|
666 |
+
|
667 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
668 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
669 |
+
shape = (4, H // 8, W // 8)
|
670 |
+
|
671 |
+
if config.save_memory:
|
672 |
+
model.low_vram_shift(is_diffusing=True)
|
673 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
674 |
+
[strength] * 13)
|
675 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
676 |
+
shape, cond, verbose=False, eta=eta,
|
677 |
+
unconditional_guidance_scale=scale,
|
678 |
+
unconditional_conditioning=un_cond)
|
679 |
+
|
680 |
+
if config.save_memory:
|
681 |
+
model.low_vram_shift(is_diffusing=False)
|
682 |
+
|
683 |
+
x_samples = model.decode_first_stage(samples)
|
684 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
685 |
+
255).astype(
|
686 |
+
np.uint8)
|
687 |
+
|
688 |
+
results = [x_samples[i] for i in range(num_samples)]
|
689 |
+
return [detected_map] + results
|
690 |
+
|
691 |
+
|
692 |
+
def process_sketch(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
693 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode):
|
694 |
+
with torch.no_grad():
|
695 |
+
input_image = HWC3(input_image)
|
696 |
+
img = resize_image(input_image, image_resolution)
|
697 |
+
H, W, C = img.shape
|
698 |
+
|
699 |
+
if condition_mode == True:
|
700 |
+
detected_map = apply_hed(resize_image(input_image, detect_resolution))
|
701 |
+
detected_map = HWC3(detected_map)
|
702 |
+
|
703 |
+
# sketch the hed image
|
704 |
+
retry = 0
|
705 |
+
cnt = 0
|
706 |
+
while retry == 0:
|
707 |
+
threshold_value = np.random.randint(110, 160)
|
708 |
+
kernel_size = 3
|
709 |
+
alpha = 1.5
|
710 |
+
beta = 50
|
711 |
+
binary_image = cv2.threshold(detected_map, threshold_value, 255, cv2.THRESH_BINARY)[1]
|
712 |
+
inverted_image = cv2.bitwise_not(binary_image)
|
713 |
+
smoothed_image = cv2.GaussianBlur(inverted_image, (kernel_size, kernel_size), 0)
|
714 |
+
sketch_image = cv2.convertScaleAbs(smoothed_image, alpha=alpha, beta=beta)
|
715 |
+
if np.sum(sketch_image < 5) > 0.005 * sketch_image.shape[0] * sketch_image.shape[1] or cnt == 5:
|
716 |
+
retry = 1
|
717 |
+
else:
|
718 |
+
cnt += 1
|
719 |
+
detected_map = sketch_image
|
720 |
+
else:
|
721 |
+
detected_map = img
|
722 |
+
|
723 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
724 |
+
|
725 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
726 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
727 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
728 |
+
|
729 |
+
if seed == -1:
|
730 |
+
seed = random.randint(0, 65535)
|
731 |
+
seed_everything(seed)
|
732 |
+
|
733 |
+
if config.save_memory:
|
734 |
+
model.low_vram_shift(is_diffusing=False)
|
735 |
+
|
736 |
+
task = 'hedsketch'
|
737 |
+
task_dic = {}
|
738 |
+
task_dic['name'] = task_to_name[task]
|
739 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
740 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
741 |
+
|
742 |
+
cond = {"c_concat": [control],
|
743 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
744 |
+
"task": task_dic}
|
745 |
+
|
746 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
747 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
748 |
+
shape = (4, H // 8, W // 8)
|
749 |
+
|
750 |
+
if config.save_memory:
|
751 |
+
model.low_vram_shift(is_diffusing=True)
|
752 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
753 |
+
[strength] * 13)
|
754 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
755 |
+
shape, cond, verbose=False, eta=eta,
|
756 |
+
unconditional_guidance_scale=scale,
|
757 |
+
unconditional_conditioning=un_cond)
|
758 |
+
|
759 |
+
if config.save_memory:
|
760 |
+
model.low_vram_shift(is_diffusing=False)
|
761 |
+
|
762 |
+
x_samples = model.decode_first_stage(samples)
|
763 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
764 |
+
255).astype(
|
765 |
+
np.uint8)
|
766 |
+
|
767 |
+
results = [x_samples[i] for i in range(num_samples)]
|
768 |
+
return [detected_map] + results
|
769 |
+
|
770 |
+
|
771 |
+
def process_colorization(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
772 |
+
strength, scale, seed, eta, condition_mode):
|
773 |
+
with torch.no_grad():
|
774 |
+
input_image = HWC3(input_image)
|
775 |
+
img = resize_image(input_image, image_resolution)
|
776 |
+
H, W, C = img.shape
|
777 |
+
if condition_mode == True:
|
778 |
+
detected_map = grayscale(input_image, image_resolution)
|
779 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
780 |
+
detected_map = detected_map[:, :, np.newaxis]
|
781 |
+
detected_map = detected_map.repeat(3, axis=2)
|
782 |
+
else:
|
783 |
+
detected_map = img
|
784 |
+
|
785 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
786 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
787 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
788 |
+
|
789 |
+
if seed == -1:
|
790 |
+
seed = random.randint(0, 65535)
|
791 |
+
seed_everything(seed)
|
792 |
+
|
793 |
+
if config.save_memory:
|
794 |
+
model.low_vram_shift(is_diffusing=False)
|
795 |
+
|
796 |
+
task = 'grayscale'
|
797 |
+
task_dic = {}
|
798 |
+
task_dic['name'] = task_to_name[task]
|
799 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
800 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
801 |
+
|
802 |
+
cond = {"c_concat": [control],
|
803 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
804 |
+
"task": task_dic}
|
805 |
+
|
806 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
807 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
808 |
+
shape = (4, H // 8, W // 8)
|
809 |
+
|
810 |
+
if config.save_memory:
|
811 |
+
model.low_vram_shift(is_diffusing=True)
|
812 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
813 |
+
[strength] * 13)
|
814 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
815 |
+
shape, cond, verbose=False, eta=eta,
|
816 |
+
unconditional_guidance_scale=scale,
|
817 |
+
unconditional_conditioning=un_cond)
|
818 |
+
|
819 |
+
if config.save_memory:
|
820 |
+
model.low_vram_shift(is_diffusing=False)
|
821 |
+
|
822 |
+
x_samples = model.decode_first_stage(samples)
|
823 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
824 |
+
255).astype(
|
825 |
+
np.uint8)
|
826 |
+
|
827 |
+
results = [x_samples[i] for i in range(num_samples)]
|
828 |
+
return [detected_map] + results
|
829 |
+
|
830 |
+
|
831 |
+
def process_deblur(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
832 |
+
strength, scale, seed, eta, ksize, condition_mode):
|
833 |
+
with torch.no_grad():
|
834 |
+
input_image = HWC3(input_image)
|
835 |
+
img = resize_image(input_image, image_resolution)
|
836 |
+
H, W, C = img.shape
|
837 |
+
if condition_mode == True:
|
838 |
+
detected_map = blur(input_image, image_resolution, ksize)
|
839 |
+
else:
|
840 |
+
detected_map = img
|
841 |
+
|
842 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
843 |
+
|
844 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
845 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
846 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
847 |
+
|
848 |
+
if seed == -1:
|
849 |
+
seed = random.randint(0, 65535)
|
850 |
+
seed_everything(seed)
|
851 |
+
|
852 |
+
if config.save_memory:
|
853 |
+
model.low_vram_shift(is_diffusing=False)
|
854 |
+
|
855 |
+
task = 'blur'
|
856 |
+
task_dic = {}
|
857 |
+
task_dic['name'] = task_to_name[task]
|
858 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
859 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
860 |
+
|
861 |
+
cond = {"c_concat": [control],
|
862 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
863 |
+
"task": task_dic}
|
864 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
865 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
866 |
+
shape = (4, H // 8, W // 8)
|
867 |
+
|
868 |
+
if config.save_memory:
|
869 |
+
model.low_vram_shift(is_diffusing=True)
|
870 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
871 |
+
[strength] * 13)
|
872 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
873 |
+
shape, cond, verbose=False, eta=eta,
|
874 |
+
unconditional_guidance_scale=scale,
|
875 |
+
unconditional_conditioning=un_cond)
|
876 |
+
|
877 |
+
if config.save_memory:
|
878 |
+
model.low_vram_shift(is_diffusing=False)
|
879 |
+
|
880 |
+
x_samples = model.decode_first_stage(samples)
|
881 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
882 |
+
255).astype(
|
883 |
+
np.uint8)
|
884 |
+
|
885 |
+
results = [x_samples[i] for i in range(num_samples)]
|
886 |
+
return [detected_map] + results
|
887 |
+
|
888 |
+
|
889 |
+
def process_inpainting(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
890 |
+
strength, scale, seed, eta, h_ratio_t, h_ratio_d, w_ratio_l, w_ratio_r, condition_mode):
|
891 |
+
with torch.no_grad():
|
892 |
+
input_image = HWC3(input_image)
|
893 |
+
img = resize_image(input_image, image_resolution)
|
894 |
+
H, W, C = img.shape
|
895 |
+
if condition_mode == True:
|
896 |
+
detected_map = inpainting(input_image, image_resolution, h_ratio_t, h_ratio_d, w_ratio_l, w_ratio_r)
|
897 |
+
else:
|
898 |
+
detected_map = img
|
899 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
900 |
+
|
901 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
902 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
903 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
904 |
+
|
905 |
+
if seed == -1:
|
906 |
+
seed = random.randint(0, 65535)
|
907 |
+
seed_everything(seed)
|
908 |
+
|
909 |
+
if config.save_memory:
|
910 |
+
model.low_vram_shift(is_diffusing=False)
|
911 |
+
|
912 |
+
task = 'inpainting'
|
913 |
+
task_dic = {}
|
914 |
+
task_dic['name'] = task_to_name[task]
|
915 |
+
task_instruction = name_to_instruction[task_dic['name']]
|
916 |
+
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
|
917 |
+
|
918 |
+
cond = {"c_concat": [control],
|
919 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
920 |
+
"task": task_dic}
|
921 |
+
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
|
922 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
923 |
+
shape = (4, H // 8, W // 8)
|
924 |
+
|
925 |
+
if config.save_memory:
|
926 |
+
model.low_vram_shift(is_diffusing=True)
|
927 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
|
928 |
+
[strength] * 13)
|
929 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
930 |
+
shape, cond, verbose=False, eta=eta,
|
931 |
+
unconditional_guidance_scale=scale,
|
932 |
+
unconditional_conditioning=un_cond)
|
933 |
+
|
934 |
+
if config.save_memory:
|
935 |
+
model.low_vram_shift(is_diffusing=False)
|
936 |
+
|
937 |
+
x_samples = model.decode_first_stage(samples)
|
938 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
|
939 |
+
255).astype(
|
940 |
+
np.uint8)
|
941 |
+
|
942 |
+
results = [x_samples[i] for i in range(num_samples)]
|
943 |
+
return [detected_map] + results
|
944 |
+
|
945 |
+
|
946 |
+
############################################################################################################
|
947 |
+
|
948 |
+
|
949 |
+
demo = gr.Blocks()
|
950 |
+
with demo:
|
951 |
+
#gr.Markdown("UniControl Stable Diffusion Demo")
|
952 |
+
gr.HTML(
|
953 |
+
"""
|
954 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
955 |
+
<h1 style="font-weight: 900; font-size: 2rem; margin: 0rem">
|
956 |
+
UniControl Stable Diffusion Demo
|
957 |
+
</h1>
|
958 |
+
<p style="font-size: 1rem; margin: 0rem">
|
959 |
+
Can Qin <sup>1,2</sup>, Shu Zhang<sup>1</sup>, Ning Yu <sup>1</sup>, Yihao Feng<sup>1</sup>, Xinyi Yang<sup>1</sup>, Yingbo Zhou <sup>1</sup>, Huan Wang <sup>1</sup>, Juan Carlos Niebles<sup>1</sup>, Caiming Xiong <sup>1</sup>, Silvio Savarese <sup>1</sup>, Stefano Ermon <sup>3</sup>, Yun Fu <sup>2</sup>, Ran Xu <sup>1</sup>
|
960 |
+
</p>
|
961 |
+
<p style="font-size: 0.8rem; margin: 0rem; line-height: 1em">
|
962 |
+
<sup>1</sup> Salesforce AI <sup>2</sup> Northeastern University <sup>3</sup> Stanford University
|
963 |
+
</p>
|
964 |
+
<p style="font-size: 0.8rem; margin: 0rem; line-height: 1em">
|
965 |
+
Work done when Can Qin was an intern at Salesforce AI Research.
|
966 |
+
</p>
|
967 |
+
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
|
968 |
+
<b> ONE compact model for ALL the visual-condition-to-image generation! </b>
|
969 |
+
<b><a href="https://github.com/salesforce/UniControl">[Github]</a></b>
|
970 |
+
<b><a href="https://canqin001.github.io/UniControl-Page/">[Website]</a></b>
|
971 |
+
<b><a href="https://arxiv.org/abs/2305.11147">[arXiv]</a></b>
|
972 |
+
</p>
|
973 |
+
</div>
|
974 |
+
""")
|
975 |
+
|
976 |
+
with gr.Tabs():
|
977 |
+
with gr.TabItem("Canny"):
|
978 |
+
with gr.Row():
|
979 |
+
gr.Markdown("## UniControl Stable Diffusion with Canny Edge Maps")
|
980 |
+
with gr.Row():
|
981 |
+
with gr.Column():
|
982 |
+
input_image = gr.Image(source='upload', type="numpy")
|
983 |
+
prompt = gr.Textbox(label="Prompt")
|
984 |
+
run_button = gr.Button(label="Run")
|
985 |
+
with gr.Accordion("Advanced options", open=False):
|
986 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
987 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
988 |
+
step=64)
|
989 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
990 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Canny', value=True)
|
991 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
992 |
+
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=40, step=1)
|
993 |
+
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200,
|
994 |
+
step=1)
|
995 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
996 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
997 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
998 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
999 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
1000 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
1001 |
+
with gr.Column():
|
1002 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
1003 |
+
height='auto')
|
1004 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
1005 |
+
strength, scale, seed, eta, low_threshold, high_threshold, condition_mode]
|
1006 |
+
run_button.click(fn=process_canny, inputs=ips, outputs=[result_gallery])
|
1007 |
+
|
1008 |
+
with gr.TabItem("HED"):
|
1009 |
+
with gr.Row():
|
1010 |
+
gr.Markdown("## UniControl Stable Diffusion with HED Maps")
|
1011 |
+
with gr.Row():
|
1012 |
+
with gr.Column():
|
1013 |
+
input_image = gr.Image(source='upload', type="numpy")
|
1014 |
+
prompt = gr.Textbox(label="Prompt")
|
1015 |
+
run_button = gr.Button(label="Run")
|
1016 |
+
with gr.Accordion("Advanced options", open=False):
|
1017 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
1018 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
1019 |
+
step=64)
|
1020 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
1021 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> HED', value=True)
|
1022 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
1023 |
+
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512,
|
1024 |
+
step=1)
|
1025 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
1026 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
1027 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
1028 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
1029 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
1030 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
1031 |
+
with gr.Column():
|
1032 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
1033 |
+
height='auto')
|
1034 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
1035 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
|
1036 |
+
run_button.click(fn=process_hed, inputs=ips, outputs=[result_gallery])
|
1037 |
+
|
1038 |
+
with gr.TabItem("Sketch"):
|
1039 |
+
with gr.Row():
|
1040 |
+
gr.Markdown("## UniControl Stable Diffusion with Sketch Maps")
|
1041 |
+
with gr.Row():
|
1042 |
+
with gr.Column():
|
1043 |
+
input_image = gr.Image(source='upload', type="numpy")
|
1044 |
+
prompt = gr.Textbox(label="Prompt")
|
1045 |
+
run_button = gr.Button(label="Run")
|
1046 |
+
with gr.Accordion("Advanced options", open=False):
|
1047 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
1048 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
1049 |
+
step=64)
|
1050 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
1051 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Sketch', value=False)
|
1052 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
1053 |
+
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512,
|
1054 |
+
step=1)
|
1055 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
1056 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
1057 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
1058 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
1059 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
1060 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
1061 |
+
with gr.Column():
|
1062 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
1063 |
+
height='auto')
|
1064 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
1065 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
|
1066 |
+
run_button.click(fn=process_sketch, inputs=ips, outputs=[result_gallery])
|
1067 |
+
|
1068 |
+
with gr.TabItem("Depth"):
|
1069 |
+
with gr.Row():
|
1070 |
+
gr.Markdown("## UniControl Stable Diffusion with Depth Maps")
|
1071 |
+
with gr.Row():
|
1072 |
+
with gr.Column():
|
1073 |
+
input_image = gr.Image(source='upload', type="numpy")
|
1074 |
+
prompt = gr.Textbox(label="Prompt")
|
1075 |
+
run_button = gr.Button(label="Run")
|
1076 |
+
with gr.Accordion("Advanced options", open=False):
|
1077 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
1078 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
1079 |
+
step=64)
|
1080 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
1081 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Depth', value=True)
|
1082 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
1083 |
+
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384,
|
1084 |
+
step=1)
|
1085 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
1086 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
1087 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
1088 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
1089 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
1090 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
1091 |
+
with gr.Column():
|
1092 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
1093 |
+
height='auto')
|
1094 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
1095 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
|
1096 |
+
run_button.click(fn=process_depth, inputs=ips, outputs=[result_gallery])
|
1097 |
+
|
1098 |
+
with gr.TabItem("Normal"):
|
1099 |
+
with gr.Row():
|
1100 |
+
gr.Markdown("## UniControl Stable Diffusion with Normal Surface")
|
1101 |
+
with gr.Row():
|
1102 |
+
with gr.Column():
|
1103 |
+
input_image = gr.Image(source='upload', type="numpy")
|
1104 |
+
prompt = gr.Textbox(label="Prompt")
|
1105 |
+
run_button = gr.Button(label="Run")
|
1106 |
+
with gr.Accordion("Advanced options", open=False):
|
1107 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
1108 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
1109 |
+
step=64)
|
1110 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
1111 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Normal', value=True)
|
1112 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
1113 |
+
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384,
|
1114 |
+
step=1)
|
1115 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
1116 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
1117 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
1118 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
1119 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
1120 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
1121 |
+
with gr.Column():
|
1122 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
1123 |
+
height='auto')
|
1124 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
1125 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
|
1126 |
+
run_button.click(fn=process_normal, inputs=ips, outputs=[result_gallery])
|
1127 |
+
|
1128 |
+
with gr.TabItem("Human Pose"):
|
1129 |
+
with gr.Row():
|
1130 |
+
gr.Markdown("## UniControl Stable Diffusion with Human Pose")
|
1131 |
+
with gr.Row():
|
1132 |
+
with gr.Column():
|
1133 |
+
input_image = gr.Image(source='upload', type="numpy")
|
1134 |
+
prompt = gr.Textbox(label="Prompt")
|
1135 |
+
run_button = gr.Button(label="Run")
|
1136 |
+
with gr.Accordion("Advanced options", open=False):
|
1137 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
1138 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
1139 |
+
step=64)
|
1140 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
1141 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Skeleton', value=True)
|
1142 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
1143 |
+
detect_resolution = gr.Slider(label="OpenPose Resolution", minimum=128, maximum=1024, value=512,
|
1144 |
+
step=1)
|
1145 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
1146 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
1147 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
1148 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
1149 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
1150 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
1151 |
+
with gr.Column():
|
1152 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
1153 |
+
height='auto')
|
1154 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
1155 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
|
1156 |
+
run_button.click(fn=process_pose, inputs=ips, outputs=[result_gallery])
|
1157 |
+
|
1158 |
+
with gr.TabItem("Segmentation"):
|
1159 |
+
with gr.Row():
|
1160 |
+
gr.Markdown("## UniControl Stable Diffusion with Segmentation Maps (ADE20K)")
|
1161 |
+
with gr.Row():
|
1162 |
+
with gr.Column():
|
1163 |
+
input_image = gr.Image(source='upload', type="numpy")
|
1164 |
+
prompt = gr.Textbox(label="Prompt")
|
1165 |
+
run_button = gr.Button(label="Run")
|
1166 |
+
with gr.Accordion("Advanced options", open=False):
|
1167 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
1168 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
1169 |
+
step=64)
|
1170 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
1171 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Seg', value=True)
|
1172 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
1173 |
+
detect_resolution = gr.Slider(label="Segmentation Resolution", minimum=128, maximum=1024,
|
1174 |
+
value=512, step=1)
|
1175 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
1176 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
1177 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
1178 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
1179 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
1180 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
1181 |
+
with gr.Column():
|
1182 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
1183 |
+
height='auto')
|
1184 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
|
1185 |
+
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
|
1186 |
+
run_button.click(fn=process_seg, inputs=ips, outputs=[result_gallery])
|
1187 |
+
|
1188 |
+
with gr.TabItem("Bbox"):
|
1189 |
+
with gr.Row():
|
1190 |
+
gr.Markdown("## UniControl Stable Diffusion with Object Bounding Boxes (MS-COCO)")
|
1191 |
+
with gr.Row():
|
1192 |
+
with gr.Column():
|
1193 |
+
input_image = gr.Image(source='upload', type="numpy")
|
1194 |
+
prompt = gr.Textbox(label="Prompt")
|
1195 |
+
run_button = gr.Button(label="Run")
|
1196 |
+
with gr.Accordion("Advanced options", open=False):
|
1197 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
1198 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
1199 |
+
step=64)
|
1200 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
1201 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Bbox', value=True)
|
1202 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
1203 |
+
confidence = gr.Slider(label="Confidence of Detection", minimum=0.1, maximum=1.0, value=0.4,
|
1204 |
+
step=0.1)
|
1205 |
+
nms_thresh = gr.Slider(label="Nms Threshold", minimum=0.1, maximum=1.0, value=0.5, step=0.1)
|
1206 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
1207 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
1208 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
1209 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
1210 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
|
1211 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
1212 |
+
with gr.Column():
|
1213 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
1214 |
+
height='auto')
|
1215 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
1216 |
+
strength, scale, seed, eta, confidence, nms_thresh, condition_mode]
|
1217 |
+
run_button.click(fn=process_bbox, inputs=ips, outputs=[result_gallery])
|
1218 |
+
|
1219 |
+
with gr.TabItem("Outpainting"):
|
1220 |
+
with gr.Row():
|
1221 |
+
gr.Markdown("## UniControl Stable Diffusion with Image Outpainting")
|
1222 |
+
with gr.Row():
|
1223 |
+
with gr.Column():
|
1224 |
+
input_image = gr.Image(source='upload', type="numpy")
|
1225 |
+
prompt = gr.Textbox(label="Prompt")
|
1226 |
+
run_button = gr.Button(label="Run")
|
1227 |
+
with gr.Accordion("Advanced options", open=False):
|
1228 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
1229 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
1230 |
+
step=64)
|
1231 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
1232 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: Extending', value=False)
|
1233 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
1234 |
+
|
1235 |
+
height_top_extended = gr.Slider(label="Top Extended Ratio (%)", minimum=1, maximum=200,
|
1236 |
+
value=50, step=1)
|
1237 |
+
height_down_extended = gr.Slider(label="Down Extended Ratio (%)", minimum=1, maximum=200,
|
1238 |
+
value=50, step=1)
|
1239 |
+
|
1240 |
+
width_left_extended = gr.Slider(label="Left Extended Ratio (%)", minimum=1, maximum=200,
|
1241 |
+
value=50, step=1)
|
1242 |
+
width_right_extended = gr.Slider(label="Right Extended Ratio (%)", minimum=1, maximum=200,
|
1243 |
+
value=50, step=1)
|
1244 |
+
|
1245 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
1246 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
1247 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
1248 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
1249 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
1250 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='')
|
1251 |
+
with gr.Column():
|
1252 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
1253 |
+
height='auto')
|
1254 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
1255 |
+
strength, scale, seed, eta, height_top_extended, height_down_extended, width_left_extended, width_right_extended, condition_mode]
|
1256 |
+
run_button.click(fn=process_outpainting, inputs=ips, outputs=[result_gallery])
|
1257 |
+
|
1258 |
+
with gr.TabItem("Inpainting"):
|
1259 |
+
with gr.Row():
|
1260 |
+
gr.Markdown("## UniControl Stable Diffusion with Image Inpainting")
|
1261 |
+
with gr.Row():
|
1262 |
+
with gr.Column():
|
1263 |
+
input_image = gr.Image(source='upload', type="numpy")
|
1264 |
+
prompt = gr.Textbox(label="Prompt")
|
1265 |
+
run_button = gr.Button(label="Run")
|
1266 |
+
with gr.Accordion("Advanced options", open=False):
|
1267 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
1268 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
1269 |
+
step=64)
|
1270 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
1271 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: Cropped Masking', value=False)
|
1272 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
1273 |
+
h_ratio_t = gr.Slider(label="Top Masking Ratio (%)", minimum=0, maximum=100, value=30,
|
1274 |
+
step=1)
|
1275 |
+
h_ratio_d = gr.Slider(label="Down Masking Ratio (%)", minimum=0, maximum=100, value=60,
|
1276 |
+
step=1)
|
1277 |
+
w_ratio_l = gr.Slider(label="Left Masking Ratio (%)", minimum=0, maximum=100, value=30,
|
1278 |
+
step=1)
|
1279 |
+
w_ratio_r = gr.Slider(label="Right Masking Ratio (%)", minimum=0, maximum=100, value=60,
|
1280 |
+
step=1)
|
1281 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
1282 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
1283 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
1284 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
1285 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
1286 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='')
|
1287 |
+
with gr.Column():
|
1288 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
1289 |
+
height='auto')
|
1290 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
1291 |
+
strength, scale, seed, eta, h_ratio_t, h_ratio_d, w_ratio_l, w_ratio_r, condition_mode]
|
1292 |
+
run_button.click(fn=process_inpainting, inputs=ips, outputs=[result_gallery])
|
1293 |
+
|
1294 |
+
with gr.TabItem("Colorization"):
|
1295 |
+
with gr.Row():
|
1296 |
+
gr.Markdown("## UniControl Stable Diffusion with Gray Image Colorization")
|
1297 |
+
with gr.Row():
|
1298 |
+
with gr.Column():
|
1299 |
+
input_image = gr.Image(source='upload', type="numpy")
|
1300 |
+
prompt = gr.Textbox(label="Prompt")
|
1301 |
+
run_button = gr.Button(label="Run")
|
1302 |
+
with gr.Accordion("Advanced options", open=False):
|
1303 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
1304 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
1305 |
+
step=64)
|
1306 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
1307 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Gray', value=False)
|
1308 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
1309 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
1310 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
1311 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
1312 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
1313 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, colorful')
|
1314 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='')
|
1315 |
+
with gr.Column():
|
1316 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
1317 |
+
height='auto')
|
1318 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
1319 |
+
strength, scale, seed, eta, condition_mode]
|
1320 |
+
run_button.click(fn=process_colorization, inputs=ips, outputs=[result_gallery])
|
1321 |
+
|
1322 |
+
with gr.TabItem("Deblurring"):
|
1323 |
+
with gr.Row():
|
1324 |
+
gr.Markdown("## UniControl Stable Diffusion with Image Deblurring")
|
1325 |
+
with gr.Row():
|
1326 |
+
with gr.Column():
|
1327 |
+
input_image = gr.Image(source='upload', type="numpy")
|
1328 |
+
prompt = gr.Textbox(label="Prompt")
|
1329 |
+
run_button = gr.Button(label="Run")
|
1330 |
+
with gr.Accordion("Advanced options", open=False):
|
1331 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
1332 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
|
1333 |
+
step=64)
|
1334 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
1335 |
+
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Blur', value=False)
|
1336 |
+
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
1337 |
+
ksize = gr.Slider(label="Kernel Size", minimum=11, maximum=101, value=51, step=2)
|
1338 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
1339 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
1340 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
1341 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
1342 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
1343 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value='')
|
1344 |
+
with gr.Column():
|
1345 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
|
1346 |
+
height='auto')
|
1347 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
|
1348 |
+
strength, scale, seed, eta, ksize, condition_mode]
|
1349 |
+
run_button.click(fn=process_deblur, inputs=ips, outputs=[result_gallery])
|
1350 |
+
|
1351 |
+
|
1352 |
+
gr.Markdown('''### Tips
|
1353 |
+
- Please pay attention to <u> Condition Extraction </u> option.
|
1354 |
+
- Positive prompts and negative prompts are very useful sometimes.
|
1355 |
+
''')
|
1356 |
+
gr.Markdown('''### Related Spaces
|
1357 |
+
- https://huggingface.co/spaces/hysts/ControlNet
|
1358 |
+
- https://huggingface.co/spaces/shi-labs/Prompt-Free-Diffusion
|
1359 |
+
''')
|
1360 |
+
demo.launch()
|
annotator/__pycache__/util.cpython-310.pyc
ADDED
Binary file (1.62 kB). View file
|
|
annotator/__pycache__/util.cpython-38.pyc
ADDED
Binary file (1.6 kB). View file
|
|
annotator/blur/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
|
3 |
+
class Blurrer:
|
4 |
+
def __call__(self, img, ksize):
|
5 |
+
img_new = cv2.GaussianBlur(img, (ksize, ksize), cv2.BORDER_DEFAULT)
|
6 |
+
img_new = img_new.astype('ubyte')
|
7 |
+
return img_new
|
annotator/blur/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (550 Bytes). View file
|
|
annotator/blur/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (507 Bytes). View file
|
|
annotator/canny/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
6 |
+
* By Can Qin
|
7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
9 |
+
'''
|
10 |
+
|
11 |
+
import cv2
|
12 |
+
|
13 |
+
|
14 |
+
class CannyDetector:
|
15 |
+
def __call__(self, img, low_threshold, high_threshold):
|
16 |
+
return cv2.Canny(img, low_threshold, high_threshold)
|
annotator/canny/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (890 Bytes). View file
|
|
annotator/canny/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (847 Bytes). View file
|
|
annotator/ckpts/ckpts.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Weights here.
|
annotator/grayscale/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from skimage import color
|
2 |
+
|
3 |
+
class GrayscaleConverter:
|
4 |
+
def __call__(self, img):
|
5 |
+
return (color.rgb2gray(img) * 255.0).astype('ubyte')
|
annotator/grayscale/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (554 Bytes). View file
|
|
annotator/grayscale/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (511 Bytes). View file
|
|
annotator/hed/__init__.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
6 |
+
* By Can Qin
|
7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
9 |
+
'''
|
10 |
+
|
11 |
+
# This is an improved version and model of HED edge detection without GPL contamination
|
12 |
+
# Please use this implementation in your products
|
13 |
+
# This implementation may produce slightly different results from Saining Xie's official implementations,
|
14 |
+
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
|
15 |
+
# Different from official models and other implementations, this is an RGB-input model (rather than BGR)
|
16 |
+
# and in this way it works better for gradio's RGB protocol
|
17 |
+
|
18 |
+
import os
|
19 |
+
import cv2
|
20 |
+
import torch
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
from einops import rearrange
|
24 |
+
from annotator.util import annotator_ckpts_path
|
25 |
+
|
26 |
+
|
27 |
+
class DoubleConvBlock(torch.nn.Module):
|
28 |
+
def __init__(self, input_channel, output_channel, layer_number):
|
29 |
+
super().__init__()
|
30 |
+
self.convs = torch.nn.Sequential()
|
31 |
+
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
32 |
+
for i in range(1, layer_number):
|
33 |
+
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
34 |
+
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
|
35 |
+
|
36 |
+
def __call__(self, x, down_sampling=False):
|
37 |
+
h = x
|
38 |
+
if down_sampling:
|
39 |
+
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
|
40 |
+
for conv in self.convs:
|
41 |
+
h = conv(h)
|
42 |
+
h = torch.nn.functional.relu(h)
|
43 |
+
return h, self.projection(h)
|
44 |
+
|
45 |
+
|
46 |
+
class ControlNetHED_Apache2(torch.nn.Module):
|
47 |
+
def __init__(self):
|
48 |
+
super().__init__()
|
49 |
+
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
|
50 |
+
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
|
51 |
+
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
|
52 |
+
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
|
53 |
+
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
|
54 |
+
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
|
55 |
+
|
56 |
+
def __call__(self, x):
|
57 |
+
h = x - self.norm
|
58 |
+
h, projection1 = self.block1(h)
|
59 |
+
h, projection2 = self.block2(h, down_sampling=True)
|
60 |
+
h, projection3 = self.block3(h, down_sampling=True)
|
61 |
+
h, projection4 = self.block4(h, down_sampling=True)
|
62 |
+
h, projection5 = self.block5(h, down_sampling=True)
|
63 |
+
return projection1, projection2, projection3, projection4, projection5
|
64 |
+
|
65 |
+
|
66 |
+
class HEDdetector:
|
67 |
+
def __init__(self):
|
68 |
+
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth"
|
69 |
+
modelpath = remote_model_path
|
70 |
+
modelpath = os.path.join(annotator_ckpts_path, "ControlNetHED.pth")
|
71 |
+
if not os.path.exists(modelpath):
|
72 |
+
from basicsr.utils.download_util import load_file_from_url
|
73 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
74 |
+
self.netNetwork = ControlNetHED_Apache2().float().cuda().eval()
|
75 |
+
self.netNetwork.load_state_dict(torch.load(modelpath))
|
76 |
+
|
77 |
+
def __call__(self, input_image):
|
78 |
+
assert input_image.ndim == 3
|
79 |
+
H, W, C = input_image.shape
|
80 |
+
with torch.no_grad():
|
81 |
+
image_hed = torch.from_numpy(input_image.copy()).float().cuda()
|
82 |
+
image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
83 |
+
edges = self.netNetwork(image_hed)
|
84 |
+
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
|
85 |
+
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
|
86 |
+
edges = np.stack(edges, axis=2)
|
87 |
+
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
|
88 |
+
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
|
89 |
+
return edge
|
90 |
+
|
91 |
+
|
92 |
+
def nms(x, t, s):
|
93 |
+
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
94 |
+
|
95 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
96 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
97 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
98 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
99 |
+
|
100 |
+
y = np.zeros_like(x)
|
101 |
+
|
102 |
+
for f in [f1, f2, f3, f4]:
|
103 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
104 |
+
|
105 |
+
z = np.zeros_like(y, dtype=np.uint8)
|
106 |
+
z[y > t] = 255
|
107 |
+
return z
|
annotator/hed/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.78 kB). View file
|
|
annotator/hed/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (4.69 kB). View file
|
|
annotator/inpainting/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
class Inpainter:
|
4 |
+
def __call__(self, img, height_top_mask, height_down_mask, width_left_mask, width_right_mask):
|
5 |
+
h = img.shape[0]
|
6 |
+
w = img.shape[1]
|
7 |
+
h_top_mask = int(float(h) / 100.0 * float(height_top_mask))
|
8 |
+
h_down_mask = int(float(h) / 100.0 * float(height_down_mask))
|
9 |
+
|
10 |
+
w_left_mask = int(float(w) / 100.0 * float(width_left_mask))
|
11 |
+
w_right_mask = int(float(w) / 100.0 * float(width_right_mask))
|
12 |
+
|
13 |
+
img_new = img
|
14 |
+
img_new[h_top_mask:h_down_mask, w_left_mask:w_right_mask] = 0
|
15 |
+
img_new = img_new.astype('ubyte')
|
16 |
+
return img_new
|
annotator/inpainting/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (824 Bytes). View file
|
|
annotator/inpainting/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (764 Bytes). View file
|
|
annotator/midas/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab)
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
annotator/midas/__init__.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
6 |
+
* By Can Qin
|
7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
9 |
+
'''
|
10 |
+
|
11 |
+
# Midas Depth Estimation
|
12 |
+
# From https://github.com/isl-org/MiDaS
|
13 |
+
# MIT LICENSE
|
14 |
+
|
15 |
+
import cv2
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
|
19 |
+
from einops import rearrange
|
20 |
+
from .api import MiDaSInference
|
21 |
+
|
22 |
+
|
23 |
+
class MidasDetector:
|
24 |
+
def __init__(self):
|
25 |
+
self.model = MiDaSInference(model_type="dpt_hybrid").cuda()
|
26 |
+
|
27 |
+
def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1):
|
28 |
+
assert input_image.ndim == 3
|
29 |
+
image_depth = input_image
|
30 |
+
with torch.no_grad():
|
31 |
+
image_depth = torch.from_numpy(image_depth).float().cuda()
|
32 |
+
image_depth = image_depth / 127.5 - 1.0
|
33 |
+
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
34 |
+
depth = self.model(image_depth)[0]
|
35 |
+
|
36 |
+
depth_pt = depth.clone()
|
37 |
+
depth_pt -= torch.min(depth_pt)
|
38 |
+
depth_pt /= torch.max(depth_pt)
|
39 |
+
depth_pt = depth_pt.cpu().numpy()
|
40 |
+
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
|
41 |
+
|
42 |
+
depth_np = depth.cpu().numpy()
|
43 |
+
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
|
44 |
+
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
|
45 |
+
z = np.ones_like(x) * a
|
46 |
+
x[depth_pt < bg_th] = 0
|
47 |
+
y[depth_pt < bg_th] = 0
|
48 |
+
normal = np.stack([x, y, z], axis=2)
|
49 |
+
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
|
50 |
+
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
51 |
+
|
52 |
+
return depth_image, normal_image
|
annotator/midas/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.96 kB). View file
|
|
annotator/midas/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (1.92 kB). View file
|
|
annotator/midas/__pycache__/api.cpython-310.pyc
ADDED
Binary file (4.1 kB). View file
|
|
annotator/midas/__pycache__/api.cpython-38.pyc
ADDED
Binary file (4.14 kB). View file
|
|
annotator/midas/api.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
6 |
+
* By Can Qin
|
7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
9 |
+
'''
|
10 |
+
|
11 |
+
# based on https://github.com/isl-org/MiDaS
|
12 |
+
|
13 |
+
import cv2
|
14 |
+
import os
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
from torchvision.transforms import Compose
|
18 |
+
|
19 |
+
from .midas.dpt_depth import DPTDepthModel
|
20 |
+
from .midas.midas_net import MidasNet
|
21 |
+
from .midas.midas_net_custom import MidasNet_small
|
22 |
+
from .midas.transforms import Resize, NormalizeImage, PrepareForNet
|
23 |
+
from annotator.util import annotator_ckpts_path
|
24 |
+
|
25 |
+
|
26 |
+
ISL_PATHS = {
|
27 |
+
"dpt_large": os.path.join(annotator_ckpts_path, "dpt_large_384.pt"),
|
28 |
+
"dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"),
|
29 |
+
"midas_v21": "",
|
30 |
+
"midas_v21_small": "",
|
31 |
+
}
|
32 |
+
|
33 |
+
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
|
34 |
+
# remote_model_path = "https://storage.googleapis.com/sfr-unicontrol-data-research/annotator/ckpts/dpt_large_384.pt" #"https://huggingface.co/Salesforce/UniControl/blob/main/annotator/ckpts/dpt_large_384.pt"
|
35 |
+
|
36 |
+
def disabled_train(self, mode=True):
|
37 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
38 |
+
does not change anymore."""
|
39 |
+
return self
|
40 |
+
|
41 |
+
|
42 |
+
def load_midas_transform(model_type):
|
43 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
44 |
+
# load transform only
|
45 |
+
if model_type == "dpt_large": # DPT-Large
|
46 |
+
net_w, net_h = 384, 384
|
47 |
+
resize_mode = "minimal"
|
48 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
49 |
+
|
50 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
51 |
+
net_w, net_h = 384, 384
|
52 |
+
resize_mode = "minimal"
|
53 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
54 |
+
|
55 |
+
elif model_type == "midas_v21":
|
56 |
+
net_w, net_h = 384, 384
|
57 |
+
resize_mode = "upper_bound"
|
58 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
59 |
+
|
60 |
+
elif model_type == "midas_v21_small":
|
61 |
+
net_w, net_h = 256, 256
|
62 |
+
resize_mode = "upper_bound"
|
63 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
64 |
+
|
65 |
+
else:
|
66 |
+
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
67 |
+
|
68 |
+
transform = Compose(
|
69 |
+
[
|
70 |
+
Resize(
|
71 |
+
net_w,
|
72 |
+
net_h,
|
73 |
+
resize_target=None,
|
74 |
+
keep_aspect_ratio=True,
|
75 |
+
ensure_multiple_of=32,
|
76 |
+
resize_method=resize_mode,
|
77 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
78 |
+
),
|
79 |
+
normalization,
|
80 |
+
PrepareForNet(),
|
81 |
+
]
|
82 |
+
)
|
83 |
+
|
84 |
+
return transform
|
85 |
+
|
86 |
+
|
87 |
+
def load_model(model_type):
|
88 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
89 |
+
# load network
|
90 |
+
model_path = ISL_PATHS[model_type]
|
91 |
+
if model_type == "dpt_large": # DPT-Large
|
92 |
+
if not os.path.exists(model_path):
|
93 |
+
from basicsr.utils.download_util import load_file_from_url
|
94 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
95 |
+
#model_path = remote_model_path
|
96 |
+
model = DPTDepthModel(
|
97 |
+
path=model_path,
|
98 |
+
backbone="vitl16_384",
|
99 |
+
non_negative=True,
|
100 |
+
)
|
101 |
+
net_w, net_h = 384, 384
|
102 |
+
resize_mode = "minimal"
|
103 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
104 |
+
|
105 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
106 |
+
if not os.path.exists(model_path):
|
107 |
+
from basicsr.utils.download_util import load_file_from_url
|
108 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
109 |
+
|
110 |
+
model = DPTDepthModel(
|
111 |
+
path=model_path,
|
112 |
+
backbone="vitb_rn50_384",
|
113 |
+
non_negative=True,
|
114 |
+
)
|
115 |
+
net_w, net_h = 384, 384
|
116 |
+
resize_mode = "minimal"
|
117 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
118 |
+
|
119 |
+
elif model_type == "midas_v21":
|
120 |
+
model = MidasNet(model_path, non_negative=True)
|
121 |
+
net_w, net_h = 384, 384
|
122 |
+
resize_mode = "upper_bound"
|
123 |
+
normalization = NormalizeImage(
|
124 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
125 |
+
)
|
126 |
+
|
127 |
+
elif model_type == "midas_v21_small":
|
128 |
+
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
129 |
+
non_negative=True, blocks={'expand': True})
|
130 |
+
net_w, net_h = 256, 256
|
131 |
+
resize_mode = "upper_bound"
|
132 |
+
normalization = NormalizeImage(
|
133 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
134 |
+
)
|
135 |
+
|
136 |
+
else:
|
137 |
+
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
138 |
+
assert False
|
139 |
+
|
140 |
+
transform = Compose(
|
141 |
+
[
|
142 |
+
Resize(
|
143 |
+
net_w,
|
144 |
+
net_h,
|
145 |
+
resize_target=None,
|
146 |
+
keep_aspect_ratio=True,
|
147 |
+
ensure_multiple_of=32,
|
148 |
+
resize_method=resize_mode,
|
149 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
150 |
+
),
|
151 |
+
normalization,
|
152 |
+
PrepareForNet(),
|
153 |
+
]
|
154 |
+
)
|
155 |
+
|
156 |
+
return model.eval(), transform
|
157 |
+
|
158 |
+
|
159 |
+
class MiDaSInference(nn.Module):
|
160 |
+
MODEL_TYPES_TORCH_HUB = [
|
161 |
+
"DPT_Large",
|
162 |
+
"DPT_Hybrid",
|
163 |
+
"MiDaS_small"
|
164 |
+
]
|
165 |
+
MODEL_TYPES_ISL = [
|
166 |
+
"dpt_large",
|
167 |
+
"dpt_hybrid",
|
168 |
+
"midas_v21",
|
169 |
+
"midas_v21_small",
|
170 |
+
]
|
171 |
+
|
172 |
+
def __init__(self, model_type):
|
173 |
+
super().__init__()
|
174 |
+
assert (model_type in self.MODEL_TYPES_ISL)
|
175 |
+
model, _ = load_model(model_type)
|
176 |
+
self.model = model
|
177 |
+
self.model.train = disabled_train
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
with torch.no_grad():
|
181 |
+
prediction = self.model(x)
|
182 |
+
return prediction
|
183 |
+
|
annotator/midas/midas/__init__.py
ADDED
File without changes
|
annotator/midas/midas/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (167 Bytes). View file
|
|
annotator/midas/midas/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (126 Bytes). View file
|
|
annotator/midas/midas/__pycache__/base_model.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
annotator/midas/midas/__pycache__/base_model.cpython-38.pyc
ADDED
Binary file (1.03 kB). View file
|
|
annotator/midas/midas/__pycache__/blocks.cpython-310.pyc
ADDED
Binary file (7.58 kB). View file
|
|
annotator/midas/midas/__pycache__/blocks.cpython-38.pyc
ADDED
Binary file (7.72 kB). View file
|
|
annotator/midas/midas/__pycache__/dpt_depth.cpython-310.pyc
ADDED
Binary file (3.3 kB). View file
|
|
annotator/midas/midas/__pycache__/dpt_depth.cpython-38.pyc
ADDED
Binary file (3.21 kB). View file
|
|
annotator/midas/midas/__pycache__/midas_net.cpython-310.pyc
ADDED
Binary file (2.72 kB). View file
|
|
annotator/midas/midas/__pycache__/midas_net.cpython-38.pyc
ADDED
Binary file (2.67 kB). View file
|
|
annotator/midas/midas/__pycache__/midas_net_custom.cpython-310.pyc
ADDED
Binary file (3.84 kB). View file
|
|
annotator/midas/midas/__pycache__/midas_net_custom.cpython-38.pyc
ADDED
Binary file (3.79 kB). View file
|
|
annotator/midas/midas/__pycache__/transforms.cpython-310.pyc
ADDED
Binary file (6.05 kB). View file
|
|
annotator/midas/midas/__pycache__/transforms.cpython-38.pyc
ADDED
Binary file (6.05 kB). View file
|
|
annotator/midas/midas/__pycache__/vit.cpython-310.pyc
ADDED
Binary file (9.74 kB). View file
|
|
annotator/midas/midas/__pycache__/vit.cpython-38.pyc
ADDED
Binary file (10.1 kB). View file
|
|
annotator/midas/midas/base_model.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
* Copyright (c) 2023 Salesforce, Inc.
|
3 |
+
* All rights reserved.
|
4 |
+
* SPDX-License-Identifier: Apache License 2.0
|
5 |
+
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
|
6 |
+
* By Can Qin
|
7 |
+
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
|
8 |
+
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
|
9 |
+
'''
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
|
14 |
+
class BaseModel(torch.nn.Module):
|
15 |
+
def load(self, path):
|
16 |
+
"""Load model from file.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
path (str): file path
|
20 |
+
"""
|
21 |
+
parameters = torch.load(path, map_location=torch.device('cpu'))
|
22 |
+
|
23 |
+
if "optimizer" in parameters:
|
24 |
+
parameters = parameters["model"]
|
25 |
+
|
26 |
+
self.load_state_dict(parameters)
|