Spaces:
Runtime error
Runtime error
import streamlit as st | |
from embedding_models.registry import registry as embedding | |
from similarity_models.registry import registry as similarity | |
import pandas as pd | |
def calculate_similarity(text_1, text_2): | |
# TODO: pick any N random embedding models | |
similarity_scores = [] | |
# TODO: pick any random similarity model | |
similarity_model = similarity.models()["cosine"] | |
for name, model in embedding.models().items(): | |
embedding_1 = model.embed(text_1) | |
embedding_2 = model.embed(text_2) | |
similarity_scores.append((name, similarity_model.score(embedding_1, embedding_2))) | |
return similarity_scores | |
class BattlegroundTab: | |
def __init__(self): | |
pass | |
def ui(self): | |
st.header("Battleground") | |
st.write("Battle embedding models with each other! May the best win!") | |
col1, col2 = st.columns(2) | |
with col1: | |
text_1 = st.text_input("Enter first text here!") | |
with col2: | |
text_2 = st.text_input("Enter second text here!") | |
expected_sc = st.slider( | |
'How similar do feel these words are', | |
min_value=1, max_value=10, step=1, value=5) / 10 | |
st.write('Expected Similarity Score = ', expected_sc) | |
if st.button("Calculate Similarity Score"): | |
similarity_scores = calculate_similarity(text_1, text_2) | |
df = pd.DataFrame(similarity_scores, columns=['Model', 'Score']) | |
df['Loss'] = abs(df['Score'] - expected_sc) | |
winner_model = df.loc[df['Loss'].idxmin(), 'Model'] | |
df['Winner'] = '' | |
df.loc[df['Model'] == winner_model, 'Winner'] = '👑' | |
df = df.drop(columns=['Loss']) | |
markdown_table = df.to_markdown(index=False) | |
st.markdown(markdown_table) | |