Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License | |
""" Tokenization classes for IndoNLG model.""" | |
from typing import Dict, List, Optional, Tuple, Union | |
from transformers import PreTrainedTokenizer, BatchEncoding | |
from collections.abc import Mapping | |
from transformers.utils import ( | |
PaddingStrategy, | |
TensorType, | |
is_tf_available, | |
is_torch_available, | |
logging, | |
to_py_obj, | |
) | |
import numpy as np | |
import sentencepiece as spm | |
from transformers.utils.generic import _is_tensorflow, _is_torch | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": { | |
"indobenchmark/indobart": "https://huggingface.co/indobenchmark/indobart/resolve/main/sentencepiece.bpe.model", | |
"indobenchmark/indogpt": "https://huggingface.co/indobenchmark/indogpt/resolve/main/sentencepiece.bpe.model", | |
"indobenchmark/indobart-v2": "https://huggingface.co/indobenchmark/indobart-v2/resolve/main/sentencepiece.bpe.model" | |
} | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"indobenchmark/indobart": 768, | |
"indobenchmark/indogpt": 768, | |
"indobenchmark/indobart-v2": 768 | |
} | |
SHARED_MODEL_IDENTIFIERS = [ | |
# Load with | |
"indobenchmark/indobart", | |
"indobenchmark/indogpt", | |
"indobenchmark/indobart-v2" | |
] | |
SPIECE_UNDERLINE = "▁" | |
# Define type aliases and NamedTuples | |
TextInput = str | |
PreTokenizedInput = List[str] | |
EncodedInput = List[int] | |
TextInputPair = Tuple[str, str] | |
PreTokenizedInputPair = Tuple[List[str], List[str]] | |
EncodedInputPair = Tuple[List[int], List[int]] | |
class IndoNLGTokenizer(PreTrainedTokenizer): | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
model_input_names=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] | |
input_error_message = "text input must of type `str` (single example), `List[str]` (batch of examples)." | |
def __init__( | |
self, | |
vocab_file, | |
decode_special_token=True, | |
bos_token="<s>", | |
eos_token="</s>", | |
sep_token="</s>", | |
cls_token="<s>", | |
unk_token="<unk>", | |
pad_token="<pad>", | |
mask_token="<mask>", | |
additional_special_tokens=[], | |
**kwargs | |
): | |
self.sp_model = spm.SentencePieceProcessor() | |
self.sp_model.Load(str(vocab_file)) | |
self.vocab_file = vocab_file | |
self.decode_special_token = decode_special_token | |
self.model_max_length = 1024 | |
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual | |
# sentencepiece vocabulary (this is the case for <s> and </s> | |
self.special_tokens_to_ids = { | |
"[javanese]": 40000, | |
"[sundanese]": 40001, | |
"[indonesian]": 40002, | |
"<mask>": 40003 | |
} | |
self.special_ids_to_tokens = {v: k for k, v in self.special_tokens_to_ids.items()} | |
# Giving a warning when exists additional_special_tokens outside of dedicated special tokens. | |
for token in additional_special_tokens: | |
if token not in self.special_tokens_to_ids: | |
print(f"Warning: Additional special tokens will be ignored in IndoNLGTokenizer.") | |
break | |
# Store Language token ID | |
self.javanese_token = '[javanese]' | |
self.javanese_token_id = 40000 | |
self.sundanese_token = '[sundanese]' | |
self.sundanese_token_id = 40001 | |
self.indonesian_token = '[indonesian]' | |
self.indonesian_token_id = 40002 | |
super().__init__( | |
vocab_file=vocab_file, | |
bos_token=bos_token, | |
eos_token=eos_token, | |
unk_token=unk_token, | |
sep_token=sep_token, | |
cls_token=cls_token, | |
pad_token=pad_token, | |
mask_token=mask_token, | |
additional_special_tokens=additional_special_tokens, | |
**kwargs, | |
) | |
self.special_token_ids = [ | |
self.bos_token_id, self.eos_token_id, self.sep_token_id, self.cls_token_id, | |
self.unk_token_id, self.pad_token_id, self.mask_token_id, | |
self.javanese_token_id, self.sundanese_token_id, self.indonesian_token_id | |
] | |
def prepare_input_for_generation(self, inputs, model_type='indobart', lang_token='[indonesian]', decoder_inputs=None, | |
decoder_lang_token='[indonesian]', padding='longest', return_tensors=None): | |
""" | |
Build model inputs for a specified `model_type`. There are two possible `model_type`, i.e., indobart and indogpt. | |
When `model_type` is indogpt, `lang_token`, `decoder_inputs`, and `decoder_lang_token` parameters will be ignored | |
and the input will be encoded in the gpt2 sequence format as follow: | |
- indogpt sequence: ``<s> X`` | |
When `model_type` is indobart, `inputs` and `lang_token` are used as the sequence and language identifier for the indobart encoder, | |
while `decoder_inputs` and `decoder_lang_token` are used as the sequence and language identifier of the decoder | |
- indobart encoder sequence: ``X </s> <lang_token_id>`` | |
- indobart decoder sequences: ``<decoder_lang_token_id> X </s>`` | |
Args: | |
inputs (:obj:`str` or `List[str]`): | |
text sequence or list of text sequences to be tokenized. | |
model_type (:obj:`str`, defaults to :obj:`indobart`): | |
model type to determine the format of the tokenized sequence. Valid values are `indobart` and `indogpt`. | |
lang_token (:obj:`str`, defaults to :obj:`[indonesian]`): | |
language token to determine the format of the tokenized sequence. Valid values are `[indonesian]`, `[sundanese], and [javanese]`. | |
decoder_inputs (:obj:`str` or `List[str]`, `optional`): | |
decoder text sequence or list of text sequences to be tokenized. | |
decoder_lang_token (:obj:`str`, defaults to :obj:`[indonesian]`): | |
decoder language token to determine the format of the tokenized sequence. Valid values are `[indonesian]`, `[sundanese], and [javanese]`. | |
padding (:obj:`str`, defaults to :obj:`longest`): | |
padding strategy to pad the tokenized sequences. Valid values are `longest`, `max_length`, and `do_not_pad`. | |
return_tensors (:obj:`str`, defaults to :obj:`None`): | |
Returned tensor type of the tokenized sequence. When set to `None`, the return type will be List[int]. Valid values are `None`, `pt`, and `tf` | |
Returns: | |
:obj:`Dict`: Dictionary with `input_ids`, `attention_mask`, `decoder_input_ids` (optional), and `decoder_attention_mask` (optional) | |
""" | |
if model_type == 'indogpt': | |
# Process indogpt input | |
if type(inputs) == str: | |
return self(f'<s> {inputs}', padding=padding, return_tensors=return_tensors) | |
elif type(inputs) == list: | |
if len(inputs) == 0 or type(inputs[0]) != str: | |
raise ValueError(IndoNLGTokenizer.input_error_message) | |
else: | |
return self([f'<s> {input_data}' for input_data in inputs], padding=padding, return_tensors=return_tensors) | |
else: | |
raise ValueError(IndoNLGTokenizer.input_error_message) | |
elif model_type == 'indobart': | |
# Process encoder input | |
if lang_token not in self.special_tokens_to_ids: | |
raise ValueError(f"Unknown lang_token `{lang_token}`, lang_token must be either `[javanese]`, `[sundanese]`, or `[indonesian]`") | |
elif type(inputs) == list: | |
if len(inputs) == 0 or type(inputs[0]) != str: | |
raise ValueError(IndoNLGTokenizer.input_error_message) | |
elif type(inputs) != str: | |
raise ValueError(IndoNLGTokenizer.input_error_message) | |
lang_id = self.special_tokens_to_ids[lang_token] | |
input_batch = self(inputs, return_attention_mask=False) | |
if type(inputs) == str: | |
input_batch['input_ids'] = [self.bos_token_id] + input_batch['input_ids'] + [self.eos_token_id, lang_id] | |
else: | |
input_batch['input_ids'] = list(map(lambda input_ids: [self.bos_token_id] + input_ids + [self.eos_token_id, lang_id], input_batch['input_ids'])) | |
if decoder_inputs is None: | |
# Return encoder input | |
return self.pad(input_batch, return_tensors=return_tensors) | |
else: | |
# Process decoder input | |
if decoder_lang_token not in self.special_tokens_to_ids: | |
raise ValueError(f"Unknown decoder_lang_token `{decoder_lang_token}`, decoder_lang_token must be either `[javanese]`, `[sundanese]`, or `[indonesian]`") | |
elif type(decoder_inputs) == list: | |
if len(decoder_inputs) == 0: | |
raise ValueError(IndoNLGTokenizer.input_error_message) | |
elif type(decoder_inputs[0]) != str: | |
raise ValueError(IndoNLGTokenizer.input_error_message) | |
elif type(decoder_inputs) != str: | |
raise ValueError(IndoNLGTokenizer.input_error_message) | |
decoder_lang_id = self.special_tokens_to_ids[decoder_lang_token] | |
decoder_input_batch = self(decoder_inputs, return_attention_mask=False) | |
if type(decoder_inputs) == str: | |
labels = [self.bos_token_id] + decoder_input_batch['input_ids'] + [self.eos_token_id, decoder_lang_id] | |
decoder_input_batch['input_ids'] = [decoder_lang_id, self.bos_token_id] + decoder_input_batch['input_ids'] + [self.eos_token_id] | |
else: | |
labels = list(map(lambda input_ids: [self.bos_token_id] + input_ids + [self.eos_token_id, decoder_lang_id], decoder_input_batch['input_ids'])) | |
decoder_input_batch['input_ids'] = list(map(lambda input_ids: [decoder_lang_id, self.bos_token_id] + input_ids + [self.eos_token_id], decoder_input_batch['input_ids'])) | |
# Padding | |
input_batch = self.pad(input_batch, return_tensors=return_tensors) | |
decoder_input_batch = self.pad(decoder_input_batch, return_tensors=return_tensors) | |
labels = self.pad({'input_ids': labels}, return_tensors=return_tensors)['input_ids'] | |
if not isinstance(labels, (list, tuple)): | |
labels[labels == self.pad_token_id] = -100 | |
else: | |
labels = list(map(lambda x: -100 if x == self.pad_token_id else x, labels)) | |
# Store into a single dict | |
input_batch['decoder_input_ids'] = decoder_input_batch['input_ids'] | |
input_batch['decoder_attention_mask'] = decoder_input_batch['attention_mask'] | |
input_batch['labels'] = labels | |
return input_batch | |
def __len__(self): | |
return max(self.special_ids_to_tokens) + 1 | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer ``prepare_for_model`` method. | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
if token_ids_1 is None: | |
return [1] + ([0] * len(token_ids_0)) + [1] | |
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] | |
def vocab_size(self): | |
return 4 + len(self.sp_model) | |
def get_vocab(self): | |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
def _tokenize(self, text: str) -> List[str]: | |
return self.sp_model.encode(text.lower(), out_type=str) | |
def convert_ids_to_tokens( | |
self, ids: Union[int, List[int]], skip_special_tokens: bool = False | |
) -> Union[str, List[str]]: | |
""" | |
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and | |
added tokens. | |
Args: | |
ids (`int` or `List[int]`): | |
The token id (or token ids) to convert to tokens. | |
skip_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not to remove special tokens in the decoding. | |
Returns: | |
`str` or `List[str]`: The decoded token(s). | |
""" | |
if isinstance(ids, int): | |
if ids not in self.added_tokens_decoder or ids in self.special_tokens_to_ids: | |
return self._convert_id_to_token(ids, skip_special_tokens=skip_special_tokens) | |
else: | |
return self.added_tokens_decoder[ids].content | |
tokens = [] | |
for index in ids: | |
index = int(index) | |
if skip_special_tokens and index in (self.all_special_ids + list(self.special_tokens_to_ids.values())): | |
continue | |
if index not in self.added_tokens_decoder or index in self.special_tokens_to_ids: | |
tokens.append(self._convert_id_to_token(index, skip_special_tokens=skip_special_tokens)) | |
else: | |
tokens.append(self.added_tokens_decoder[index].content) | |
return tokens | |
def _convert_token_to_id(self, token): | |
""" Converts a token (str) in an id using the vocab. """ | |
if token in self.special_tokens_to_ids: | |
return self.special_tokens_to_ids[token] | |
return self.sp_model.PieceToId(token) | |
def _convert_id_to_token(self, index, skip_special_tokens=False): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
if skip_special_tokens and index in self.special_token_ids: | |
return '' | |
if index in self.special_ids_to_tokens: | |
return self.special_ids_to_tokens[index] | |
token = self.sp_model.IdToPiece(index) | |
if '<0x' in token: | |
char_rep = chr(int(token[1:-1], 0)) | |
if char_rep.isprintable(): | |
return char_rep | |
return token | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
state["sp_model"] = None | |
return state | |
def __setstate__(self, d): | |
self.__dict__ = d | |
# for backward compatibility | |
if not hasattr(self, "sp_model_kwargs"): | |
self.sp_model_kwargs = {} | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(self.vocab_file) | |
def decode(self, inputs, skip_special_tokens=False, **kwargs): | |
outputs = super().decode(inputs, skip_special_tokens=skip_special_tokens, **kwargs) | |
return outputs.replace(' ','').replace(SPIECE_UNDERLINE, ' ') | |
def _pad_decoder( | |
self, | |
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], | |
max_length: Optional[int] = None, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
pad_to_multiple_of: Optional[int] = None, | |
return_attention_mask: Optional[bool] = None, | |
) -> dict: | |
""" | |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch) | |
Args: | |
encoded_inputs: | |
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). | |
max_length: maximum length of the returned list and optionally padding length (see below). | |
Will truncate by taking into account the special tokens. | |
padding_strategy: PaddingStrategy to use for padding. | |
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch | |
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default) | |
- PaddingStrategy.DO_NOT_PAD: Do not pad | |
The tokenizer padding sides are defined in self.padding_side: | |
- 'left': pads on the left of the sequences | |
- 'right': pads on the right of the sequences | |
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. | |
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability | |
>= 7.5 (Volta). | |
return_attention_mask: | |
(optional) Set to False to avoid returning attention mask (default: set to model specifics) | |
""" | |
# Load from model defaults | |
if return_attention_mask is None: | |
return_attention_mask = "decoder_attention_mask" in self.model_input_names | |
required_input = encoded_inputs[self.model_input_names[2]] | |
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | |
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | |
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length | |
# Initialize attention mask if not present. | |
if return_attention_mask and "decoder_attention_mask" not in encoded_inputs: | |
encoded_inputs["decoder_attention_mask"] = [1] * len(required_input) | |
if needs_to_be_padded: | |
difference = max_length - len(required_input) | |
if self.padding_side == "right": | |
if return_attention_mask: | |
encoded_inputs["decoder_attention_mask"] = encoded_inputs["decoder_attention_mask"] + [0] * difference | |
if "decoder_token_type_ids" in encoded_inputs: | |
encoded_inputs["decoder_token_type_ids"] = ( | |
encoded_inputs["decoder_token_type_ids"] + [self.pad_token_type_id] * difference | |
) | |
if "decoder_special_tokens_mask" in encoded_inputs: | |
encoded_inputs["decoder_special_tokens_mask"] = encoded_inputs["decoder_special_tokens_mask"] + [1] * difference | |
encoded_inputs[self.model_input_names[2]] = required_input + [self.pad_token_id] * difference | |
label_input = encoded_inputs[self.model_input_names[4]] | |
encoded_inputs[self.model_input_names[4]] = label_input + [-100] * difference | |
elif self.padding_side == "left": | |
if return_attention_mask: | |
encoded_inputs["decoder_attention_mask"] = [0] * difference + encoded_inputs["decoder_attention_mask"] | |
if "decoder_token_type_ids" in encoded_inputs: | |
encoded_inputs["decoder_token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ | |
"decoder_token_type_ids" | |
] | |
if "decoder_special_tokens_mask" in encoded_inputs: | |
encoded_inputs["decoder_special_tokens_mask"] = [1] * difference + encoded_inputs["decoder_special_tokens_mask"] | |
encoded_inputs[self.model_input_names[2]] = [self.pad_token_id] * difference + required_input | |
label_input = encoded_inputs[self.model_input_names[4]] | |
encoded_inputs[self.model_input_names[4]] = label_input + [-100] * difference | |
else: | |
raise ValueError("Invalid padding strategy:" + str(self.padding_side)) | |
return encoded_inputs | |
def pad(self, | |
encoded_inputs: Union[ | |
BatchEncoding, | |
List[BatchEncoding], | |
Dict[str, EncodedInput], | |
Dict[str, List[EncodedInput]], | |
List[Dict[str, EncodedInput]], | |
], | |
padding: Union[bool, str, PaddingStrategy] = True, | |
max_length: Optional[int] = None, | |
pad_to_multiple_of: Optional[int] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
verbose: bool = True, | |
) -> BatchEncoding: | |
""" | |
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length | |
in the batch. | |
Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`, | |
`self.pad_token_id` and `self.pad_token_type_id`) | |
<Tip> | |
If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the | |
result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of | |
PyTorch tensors, you will lose the specific device of your tensors however. | |
</Tip> | |
Args: | |
encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`): | |
Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of | |
tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str, | |
List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader | |
collate function. | |
Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see | |
the note above for the return type. | |
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
index) among: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
lengths). | |
max_length (`int`, *optional*): | |
Maximum length of the returned list and optionally padding length (see above). | |
pad_to_multiple_of (`int`, *optional*): | |
If set will pad the sequence to a multiple of the provided value. | |
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability | |
>= 7.5 (Volta). | |
return_attention_mask (`bool`, *optional*): | |
Whether to return the attention mask. If left to the default, will return the attention mask according | |
to the specific tokenizer's default, defined by the `return_outputs` attribute. | |
[What are attention masks?](../glossary#attention-mask) | |
return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
If set, will return tensors instead of list of python integers. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return Numpy `np.ndarray` objects. | |
verbose (`bool`, *optional*, defaults to `True`): | |
Whether or not to print more information and warnings. | |
""" | |
# If we have a list of dicts, let's convert it in a dict of lists | |
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader | |
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping): | |
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()} | |
# The model's main input name, usually `input_ids`, has be passed for padding | |
if self.model_input_names[0] not in encoded_inputs: | |
raise ValueError( | |
"You should supply an encoding or a list of encodings to this method " | |
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}" | |
) | |
required_input = encoded_inputs[self.model_input_names[0]] | |
if not required_input: | |
if return_attention_mask: | |
encoded_inputs["attention_mask"] = [] | |
return encoded_inputs | |
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects | |
# and rebuild them afterwards if no return_tensors is specified | |
# Note that we lose the specific device the tensor may be on for PyTorch | |
first_element = required_input[0] | |
if isinstance(first_element, (list, tuple)): | |
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. | |
for item in required_input: | |
if len(item) != 0: | |
first_element = item[0] | |
break | |
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do. | |
if not isinstance(first_element, (int, list, tuple)): | |
if is_tf_available() and _is_tensorflow(first_element): | |
return_tensors = "tf" if return_tensors is None else return_tensors | |
elif is_torch_available() and _is_torch(first_element): | |
return_tensors = "pt" if return_tensors is None else return_tensors | |
elif isinstance(first_element, np.ndarray): | |
return_tensors = "np" if return_tensors is None else return_tensors | |
else: | |
raise ValueError( | |
f"type of {first_element} unknown: {type(first_element)}. " | |
f"Should be one of a python, numpy, pytorch or tensorflow object." | |
) | |
for key, value in encoded_inputs.items(): | |
encoded_inputs[key] = to_py_obj(value) | |
# Convert padding_strategy in PaddingStrategy | |
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies( | |
padding=padding, max_length=max_length, verbose=verbose | |
) | |
required_input = encoded_inputs[self.model_input_names[0]] | |
if required_input and not isinstance(required_input[0], (list, tuple)): | |
encoded_inputs = self._pad( | |
encoded_inputs, | |
max_length=max_length, | |
padding_strategy=padding_strategy, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
) | |
return BatchEncoding(encoded_inputs, tensor_type=return_tensors) | |
batch_size = len(required_input) | |
assert all( | |
len(v) == batch_size for v in encoded_inputs.values() | |
), "Some items in the output dictionary have a different batch size than others." | |
if padding_strategy == PaddingStrategy.LONGEST: | |
max_length = max(len(inputs) for inputs in required_input) | |
padding_strategy = PaddingStrategy.MAX_LENGTH | |
batch_outputs = {} | |
for i in range(batch_size): | |
inputs = dict((k, v[i]) for k, v in encoded_inputs.items()) | |
outputs = self._pad( | |
inputs, | |
max_length=max_length, | |
padding_strategy=padding_strategy, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
) | |
# Handle decoder_input_ids | |
if self.model_input_names[2] in outputs: | |
max_decoder_length = max(len(inputs) for inputs in encoded_inputs[self.model_input_names[2]]) | |
outputs = self._pad_decoder( | |
outputs, | |
max_length=max_decoder_length, | |
padding_strategy=padding_strategy, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
) | |
for key, value in outputs.items(): | |
if key not in batch_outputs: | |
batch_outputs[key] = [] | |
batch_outputs[key].append(value) | |
return BatchEncoding(batch_outputs, tensor_type=return_tensors) |