File size: 16,473 Bytes
58abf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e18c38e
 
58abf68
e18c38e
58abf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
""" Tokenization classes for IndoNLG model."""

from typing import List, Optional, Tuple, Union
from transformers import PreTrainedTokenizer

from transformers.utils import logging
import sentencepiece as spm

logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "indobenchmark/indobart": "https://huggingface.co/indobenchmark/indobart/resolve/main/sentencepiece.bpe.model",
        "indobenchmark/indogpt": "https://huggingface.co/indobenchmark/indogpt/resolve/main/sentencepiece.bpe.model",
        "indobenchmark/indobart-v2": "https://huggingface.co/indobenchmark/indobart-v2/resolve/main/sentencepiece.bpe.model"
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "indobenchmark/indobart": 768,
    "indobenchmark/indogpt": 768,
    "indobenchmark/indobart-v2": 768
}

SHARED_MODEL_IDENTIFIERS = [
    # Load with
    "indobenchmark/indobart",
    "indobenchmark/indogpt",
    "indobenchmark/indobart-v2"
]

SPIECE_UNDERLINE = "▁"

# Define type aliases and NamedTuples
TextInput = str
PreTokenizedInput = List[str]
EncodedInput = List[int]
TextInputPair = Tuple[str, str]
PreTokenizedInputPair = Tuple[List[str], List[str]]
EncodedInputPair = Tuple[List[int], List[int]]

class IndoNLGTokenizer(PreTrainedTokenizer):
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    model_input_names=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels']
    input_error_message = "text input must of type `str` (single example), `List[str]` (batch of examples)."

    def __init__(
        self,
        vocab_file,
        decode_special_token=True,
        bos_token="<s>",
        eos_token="</s>",
        sep_token="</s>",
        cls_token="<s>",
        unk_token="<unk>",
        pad_token="<pad>",
        mask_token="<mask>",
        additional_special_tokens=[],
        **kwargs
    ):
        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(str(vocab_file))
        self.vocab_file = vocab_file
        self.decode_special_token = decode_special_token
        self.model_max_length = 1024
        
        # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
        # sentencepiece vocabulary (this is the case for <s> and </s>
        self.special_tokens_to_ids = {
            "[javanese]": 40000, 
            "[sundanese]": 40001, 
            "[indonesian]": 40002,
            "<mask>": 40003
        }
        self.special_ids_to_tokens = {v: k for k, v in self.special_tokens_to_ids.items()}
        
        # Giving a warning when exists additional_special_tokens outside of dedicated special tokens.
        for token in additional_special_tokens:
            if token not in self.special_tokens_to_ids:
                print(f"Warning: Additional special tokens will be ignored in IndoNLGTokenizer.")
                break
        
        # Store Language token ID
        self.javanese_token = '[javanese]'
        self.javanese_token_id = 40000
        self.sundanese_token = '[sundanese]'
        self.sundanese_token_id = 40001
        self.indonesian_token = '[indonesian]'
        self.indonesian_token_id = 40002
        
        super().__init__(
            vocab_file=vocab_file,
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            sep_token=sep_token,
            cls_token=cls_token,
            pad_token=pad_token,
            mask_token=mask_token,
            additional_special_tokens=additional_special_tokens,
            **kwargs,
        )
        self.special_token_ids = [
            self.bos_token_id, self.eos_token_id, self.sep_token_id, self.cls_token_id, 
            self.unk_token_id, self.pad_token_id, self.mask_token_id,
            self.javanese_token_id, self.sundanese_token_id, self.indonesian_token_id
        ]
    
    def prepare_input_for_generation(self, inputs, model_type='indobart', lang_token='[indonesian]', decoder_inputs=None,
                                             decoder_lang_token='[indonesian]', padding='longest', return_tensors=None):
        """
        Build model inputs for a specified `model_type`. There are two possible `model_type`, i.e., indobart and indogpt.
        
        When `model_type` is indogpt, `lang_token`, `decoder_inputs`, and `decoder_lang_token` parameters will be ignored 
        and the input will be encoded in the gpt2 sequence format as follow: 
        
        - indogpt sequence: ``<s> X``
        
        When `model_type` is indobart, `inputs` and `lang_token` are used as the sequence and language identifier for the indobart encoder, 
        while `decoder_inputs` and `decoder_lang_token` are used as the sequence and language identifier of the decoder
        
        - indobart encoder sequence: ``X </s> <lang_token_id>``
        - indobart decoder sequences: ``<decoder_lang_token_id> X </s>``

        Args:
            inputs (:obj:`str` or `List[str]`):
                text sequence or list of text sequences to be tokenized.
            model_type (:obj:`str`, defaults to :obj:`indobart`):
                model type to determine the format of the tokenized sequence. Valid values are `indobart` and `indogpt`.
            lang_token (:obj:`str`, defaults to :obj:`[indonesian]`):
                language token to determine the format of the tokenized sequence. Valid values are `[indonesian]`, `[sundanese], and [javanese]`.
            decoder_inputs (:obj:`str` or `List[str]`, `optional`):
                decoder text sequence or list of text sequences to be tokenized.
            decoder_lang_token (:obj:`str`, defaults to :obj:`[indonesian]`):
                decoder language token to determine the format of the tokenized sequence. Valid values are `[indonesian]`, `[sundanese], and [javanese]`.
            padding (:obj:`str`, defaults to :obj:`longest`):
                padding strategy to pad the tokenized sequences. Valid values are `longest`, `max_length`, and `do_not_pad`.
            return_tensors (:obj:`str`, defaults to :obj:`None`):
                Returned tensor type of the tokenized sequence. When set to `None`, the return type will be List[int]. Valid values are `None`, `pt`, and `tf`

        Returns:
            :obj:`Dict`: Dictionary with `input_ids`, `attention_mask`, `decoder_input_ids` (optional), and `decoder_attention_mask` (optional)
        """        
        if model_type == 'indogpt':
            # Process indogpt input
            if type(inputs) == str:
                 return self(f'<s> {inputs}', padding=padding, return_tensors=return_tensors)
            elif type(inputs) == list:
                if len(inputs) == 0 or type(inputs[0]) != str:
                    raise ValueError(IndoNLGTokenizer.input_error_message)
                else:
                    return self([f'<s> {input_data}' for input_data in inputs], padding=padding, return_tensors=return_tensors)
            else:
                raise ValueError(IndoNLGTokenizer.input_error_message)
        elif model_type == 'indobart':
                                     
            # Process encoder input
            if lang_token not in self.special_tokens_to_ids:
                raise ValueError(f"Unknown lang_token `{lang_token}`, lang_token must be either `[javanese]`, `[sundanese]`, or `[indonesian]`")  
            elif type(inputs) == list:
                if len(inputs) == 0 or type(inputs[0]) != str:
                    raise ValueError(IndoNLGTokenizer.input_error_message)
            elif type(inputs) != str:
                raise ValueError(IndoNLGTokenizer.input_error_message)
                
            lang_id = self.special_tokens_to_ids[lang_token]
            input_batch = self(inputs, return_attention_mask=False)
            if type(inputs) == str:
                input_batch['input_ids'] = [self.bos_token_id] + input_batch['input_ids'] + [self.eos_token_id, lang_id]
            else:
                input_batch['input_ids'] = list(map(lambda input_ids: [self.bos_token_id] + input_ids + [self.eos_token_id, lang_id], input_batch['input_ids']))
            
            if decoder_inputs is None:
                # Return encoder input
                return self.pad(input_batch, return_tensors=return_tensors)
            else:
                # Process decoder input
                if decoder_lang_token not in self.special_tokens_to_ids:
                    raise ValueError(f"Unknown decoder_lang_token `{decoder_lang_token}`, decoder_lang_token must be either `[javanese]`, `[sundanese]`, or `[indonesian]`")  
                elif type(decoder_inputs) == list:
                    if len(decoder_inputs) == 0:
                        raise ValueError(IndoNLGTokenizer.input_error_message)
                    elif type(decoder_inputs[0]) != str:
                        raise ValueError(IndoNLGTokenizer.input_error_message)
                elif type(decoder_inputs) != str:
                    raise ValueError(IndoNLGTokenizer.input_error_message)

                decoder_lang_id = self.special_tokens_to_ids[decoder_lang_token]
                decoder_input_batch = self(decoder_inputs, return_attention_mask=False)
                
                if type(decoder_inputs) == str:
                    labels = [self.bos_token_id] + decoder_input_batch['input_ids'] + [self.eos_token_id, decoder_lang_id]
                    decoder_input_batch['input_ids'] = [decoder_lang_id, self.bos_token_id] + decoder_input_batch['input_ids'] + [self.eos_token_id]
                else:
                    labels = list(map(lambda input_ids: [self.bos_token_id] + input_ids + [self.eos_token_id, decoder_lang_id], decoder_input_batch['input_ids']))
                    decoder_input_batch['input_ids'] = list(map(lambda input_ids: [decoder_lang_id, self.bos_token_id] + input_ids + [self.eos_token_id], decoder_input_batch['input_ids']))
                    
                # Padding
                input_batch = self.pad(input_batch, return_tensors=return_tensors)
                decoder_input_batch = self.pad(decoder_input_batch, return_tensors=return_tensors)
                labels = self.pad({'input_ids': labels}, return_tensors=return_tensors)['input_ids']
                if not isinstance(labels, (list, tuple)):
                    labels[labels == self.pad_token_id] = -100
                else:
                    labels = list(map(lambda x: -100 if x == self.pad_token_id else x, labels))
                
                # Store into a single dict
                input_batch['decoder_input_ids'] = decoder_input_batch['input_ids']
                input_batch['decoder_attention_mask'] = decoder_input_batch['attention_mask']
                input_batch['labels'] = labels
                
                return input_batch

    def __len__(self):
        return max(self.special_ids_to_tokens) + 1
    
    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer ``prepare_for_model`` method.

        Args:
            token_ids_0 (:obj:`List[int]`):
                List of IDs.
            token_ids_1 (:obj:`List[int]`, `optional`):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        if token_ids_1 is None:
            return [1] + ([0] * len(token_ids_0)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]

    @property
    def vocab_size(self):
        return 4 + len(self.sp_model)

    def get_vocab(self):
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    def _tokenize(self, text: str) -> List[str]:
        return self.sp_model.encode(text.lower(), out_type=str)
    
    def convert_ids_to_tokens(
        self, ids: Union[int, List[int]], skip_special_tokens: bool = False
    ) -> Union[str, List[str]]:
        """
        Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
        added tokens.
        Args:
            ids (`int` or `List[int]`):
                The token id (or token ids) to convert to tokens.
            skip_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not to remove special tokens in the decoding.
        Returns:
            `str` or `List[str]`: The decoded token(s).
        """
        if isinstance(ids, int):
            if ids not in self.added_tokens_decoder or ids in self.special_tokens_to_ids:
                return self._convert_id_to_token(ids, skip_special_tokens=skip_special_tokens)
            else:
                return self.added_tokens_decoder[ids].content
        tokens = []
        for index in ids:
            index = int(index)
            if skip_special_tokens and index in (self.all_special_ids + list(self.special_tokens_to_ids.values())):
                continue
            if index not in self.added_tokens_decoder or index in self.special_tokens_to_ids:
                tokens.append(self._convert_id_to_token(index, skip_special_tokens=skip_special_tokens))                
            else:
                tokens.append(self.added_tokens_decoder[index].content)
        return tokens
    
    def _convert_token_to_id(self, token):
        """ Converts a token (str) in an id using the vocab. """
        if token in self.special_tokens_to_ids:
            return self.special_tokens_to_ids[token]
        return self.sp_model.PieceToId(token)
    
    def _convert_id_to_token(self, index, skip_special_tokens=False):
        """Converts an index (integer) in a token (str) using the vocab."""
        if skip_special_tokens and index in self.special_token_ids:
            return ''
            
        if index in self.special_ids_to_tokens:
            return self.special_ids_to_tokens[index]
        
        token = self.sp_model.IdToPiece(index)
        if '<0x' in token:
            char_rep = chr(int(token[1:-1], 0))
            if char_rep.isprintable():
                return char_rep
        return token
    
    def __getstate__(self):
        state = self.__dict__.copy()
        state["sp_model"] = None
        return state

    def __setstate__(self, d):
        self.__dict__ = d

        # for backward compatibility
        if not hasattr(self, "sp_model_kwargs"):
            self.sp_model_kwargs = {}

        self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
        self.sp_model.Load(self.vocab_file)

    def decode(self, inputs, skip_special_tokens=False, **kwargs):     
        outputs = super().decode(inputs, skip_special_tokens=skip_special_tokens, **kwargs)
        return outputs.replace(' ','').replace(SPIECE_UNDERLINE, ' ')