Spaces:
Running
Running
import streamlit as st | |
from transformers import pipeline | |
from PIL import Image | |
import requests | |
import torch | |
from diffusers import DiffusionPipeline | |
def generate_text(prompt, text_generator): | |
generated_text = text_generator(prompt, max_length=200, num_return_sequences=1, temperature=0.7)[0]['generated_text'] | |
return generated_text | |
def generate_image(prompt, img_gen): | |
generated_image = img_gen(prompt)[0] | |
return generated_image | |
def generate_blog_post(keywords, text_generator, img_gen): | |
# Text generation | |
generated_text = generate_text(f"Write about {keywords}", text_generator) | |
# Image generation | |
generated_image = generate_image(keywords, img_gen) | |
return f"# {keywords}\n\n## Introduction\n{generated_text}\n\n## Body\n{generated_text}\n\n## Conclusion\n{generated_text}\n\nGenerated Image: {generated_image}" | |
def main(): | |
# Load models | |
text_model_name = "EleutherAI/gpt-neo-1.3B" | |
text_generator = pipeline("text-generation", model=text_model_name, tokenizer=text_model_name) | |
img_gen = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") | |
# Title of the app | |
st.title("AI Blog Post Generator") | |
# User input for keywords | |
user_keywords = st.text_input("Enter keywords for the blog post:") | |
# Button to generate blog post | |
if st.button("Generate Blog Post"): | |
# Generate blog post | |
blog_post = generate_blog_post(user_keywords, text_generator, img_gen) | |
# Display the generated blog post | |
st.markdown(blog_post, unsafe_allow_html=True) | |
if __name__ == "__main__": | |
main() | |