Spaces:
Runtime error
Runtime error
Aakash Vardhan
commited on
Commit
·
e1e15b4
1
Parent(s):
f66a6e7
app.py
CHANGED
@@ -33,14 +33,10 @@ tokenizer.padding_side = "right"
|
|
33 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
34 |
|
35 |
|
36 |
-
def respond(
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
max_tokens=256,
|
41 |
-
temperature=0.3,
|
42 |
-
top_p=0.95,
|
43 |
-
):
|
44 |
# Construct the chat list
|
45 |
chat_list = [{"role": "system", "content": system_message}]
|
46 |
for user, assistant in history:
|
@@ -52,37 +48,23 @@ def respond(
|
|
52 |
)
|
53 |
chat_list.append({"role": "user", "content": message})
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
prompt += f"{chat['role']}: {chat['content']}\n"
|
59 |
-
prompt += "assistant:"
|
60 |
-
|
61 |
-
# Get the input length
|
62 |
-
input_ids = pipe.tokenizer.encode(prompt, return_tensors="pt")
|
63 |
-
input_length = input_ids.shape[1]
|
64 |
-
|
65 |
-
# Ensure max_tokens is a positive integer
|
66 |
-
max_tokens = max(1, int(max_tokens))
|
67 |
-
|
68 |
-
# Adjust max_length to be greater than input_length
|
69 |
-
max_length = input_length + max_tokens
|
70 |
|
71 |
outputs = pipe(
|
72 |
prompt,
|
73 |
-
max_new_tokens=
|
74 |
-
max_length=max_length,
|
75 |
num_beams=1,
|
76 |
do_sample=True,
|
77 |
-
temperature=
|
78 |
-
top_p=
|
79 |
-
top_k=50
|
80 |
)
|
81 |
-
new_text = outputs[0][
|
82 |
return new_text.strip()
|
83 |
|
84 |
|
85 |
-
|
86 |
examples = [
|
87 |
["Suggest some breeds that get along with each other"],
|
88 |
["Explain LLM in AI"],
|
@@ -95,21 +77,6 @@ demo = gr.ChatInterface(
|
|
95 |
placeholder="Enter your message here...", container=False, scale=7
|
96 |
),
|
97 |
examples=examples,
|
98 |
-
additional_inputs=[
|
99 |
-
gr.Textbox(
|
100 |
-
value="You are General Knowledge Assistant. Answer the questions based on the provided information. Be succinct and use first-principles thinking to answer the questions.",
|
101 |
-
label="System message",
|
102 |
-
),
|
103 |
-
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
|
104 |
-
gr.Slider(minimum=0.1, maximum=2.0, value=0.3, step=0.1, label="Temperature"),
|
105 |
-
gr.Slider(
|
106 |
-
minimum=0.1,
|
107 |
-
maximum=1.0,
|
108 |
-
value=0.95,
|
109 |
-
step=0.05,
|
110 |
-
label="Top-p (nucleus sampling)",
|
111 |
-
),
|
112 |
-
],
|
113 |
title="General Knowledge Assistant",
|
114 |
description="Ask me anything about general knowledge. I'll try to answer succinctly using first principles.",
|
115 |
)
|
|
|
33 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
34 |
|
35 |
|
36 |
+
def respond(message, history):
|
37 |
+
system_message = """You are General Knowledge Assistant.
|
38 |
+
Answer the questions based on the provided information.
|
39 |
+
Be succinct and use first-principles thinking to answer the questions."""
|
|
|
|
|
|
|
|
|
40 |
# Construct the chat list
|
41 |
chat_list = [{"role": "system", "content": system_message}]
|
42 |
for user, assistant in history:
|
|
|
48 |
)
|
49 |
chat_list.append({"role": "user", "content": message})
|
50 |
|
51 |
+
prompt = pipe.tokenizer.apply_chat_template(
|
52 |
+
chat_list, tokenize=False, add_generation_prompt=True
|
53 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
outputs = pipe(
|
56 |
prompt,
|
57 |
+
max_new_tokens=256,
|
|
|
58 |
num_beams=1,
|
59 |
do_sample=True,
|
60 |
+
temperature=0.3,
|
61 |
+
top_p=0.95,
|
62 |
+
top_k=50,
|
63 |
)
|
64 |
+
new_text = outputs[0]["generated_text"][len(prompt) :]
|
65 |
return new_text.strip()
|
66 |
|
67 |
|
|
|
68 |
examples = [
|
69 |
["Suggest some breeds that get along with each other"],
|
70 |
["Explain LLM in AI"],
|
|
|
77 |
placeholder="Enter your message here...", container=False, scale=7
|
78 |
),
|
79 |
examples=examples,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
title="General Knowledge Assistant",
|
81 |
description="Ask me anything about general knowledge. I'll try to answer succinctly using first principles.",
|
82 |
)
|