Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ultralytics import YOLO | |
import torch | |
import numpy as np | |
from utils.tools_gradio import fast_process | |
from utils.tools import format_results | |
# Load the FastSAM model | |
model = YOLO("./weights/FastSAM.pt") | |
device = torch.device("cpu") | |
model.to(device) | |
def get_input_scale(input, input_size=1024): | |
input_size = int(input_size) | |
w, h = input.size | |
scale = input_size / max(w, h) | |
new_w = int(w * scale) | |
new_h = int(h * scale) | |
input = input.resize((new_w, new_h)) | |
return input, input_size | |
def segment_everything( | |
input, | |
iou_threshold=0.9, | |
confidence_threshold=0.4 | |
): | |
input, input_size = get_input_scale(input) | |
results = model( | |
input, | |
device=device, | |
retina_masks=True, | |
iou=iou_threshold, | |
conf=confidence_threshold, | |
imgsz=input_size, | |
) | |
annotations = results[0].masks.data | |
fig = fast_process( | |
annotations=annotations, | |
image=input, | |
device=device, | |
scale=(1024 // input_size), | |
better_quality=False, | |
mask_random_color=True, | |
bbox=None, | |
use_retina=True, | |
withContours=True, | |
) | |
return fig | |
title = "FastSAM: Fast Segment Anything" | |
description_e = "Demo project of FastSAM. Adapted from Ultralytics. CPU only." | |
examples = [ | |
["examples/sa_8776.jpg"], | |
["examples/sa_414.jpg"], | |
["examples/sa_1309.jpg"], | |
["examples/sa_11025.jpg"], | |
["examples/sa_561.jpg"], | |
["examples/sa_192.jpg"], | |
["examples/sa_10039.jpg"], | |
["examples/sa_862.jpg"], | |
] | |
default_example = examples[0] | |
cond_img_e = gr.Image(label="Input", value=default_example[0], type="pil") | |
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type="pil") | |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" | |
with gr.Blocks(css=css, title="Fast Segment Anything") as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Title | |
gr.Markdown(title) | |
with gr.Column(scale=1): | |
# News | |
gr.Markdown(description_e) | |
with gr.Tab("Everything mode"): | |
# Images | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=1): | |
cond_img_e.render() | |
with gr.Column(scale=1): | |
segm_img_e.render() | |
# Submit & Clear | |
with gr.Row(): | |
with gr.Column(): | |
segment_btn_e = gr.Button( | |
"Segment Everything", variant="primary" | |
) | |
clear_btn_e = gr.Button("Clear", variant="secondary") | |
gr.Markdown("Try some of the examples below ⬇️") | |
gr.Examples( | |
examples=examples, | |
inputs=[cond_img_e], | |
outputs=segm_img_e, | |
fn=segment_everything, | |
cache_examples=True, | |
examples_per_page=4, | |
) | |
with gr.Column(): | |
with gr.Accordion("Advanced options", open=False): | |
iou_threshold = gr.Slider( | |
0.1, | |
0.9, | |
0.7, | |
step=0.1, | |
label="iou", | |
info="iou threshold for filtering the annotations", | |
) | |
conf_threshold = gr.Slider( | |
0.1, | |
0.9, | |
0.25, | |
step=0.05, | |
label="conf", | |
info="object confidence threshold", | |
) | |
# Description | |
gr.Markdown(description_e) | |
segment_btn_e.click( | |
segment_everything, | |
inputs=[cond_img_e, iou_threshold, conf_threshold], | |
outputs=segm_img_e, | |
) | |
def clear(): | |
return None, None | |
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e]) | |
demo.queue() | |
demo.launch(debug=True) |