File size: 12,767 Bytes
2caf84c
0e0ee20
 
 
 
 
 
e300c6e
c724573
e300c6e
2caf84c
7039ded
607d766
e2c1d93
0e0ee20
 
 
 
 
 
c724573
 
463aefd
c724573
 
 
 
e300c6e
 
 
 
 
 
 
 
 
0e0ee20
f3e96f9
c59400c
c724573
 
e2c1d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1816d2d
 
 
 
 
 
 
 
 
 
 
11166a4
 
1816d2d
 
2c6e805
 
89cc8a4
 
1816d2d
 
 
89cc8a4
1816d2d
 
 
89cc8a4
11166a4
1816d2d
 
 
 
11166a4
1816d2d
11166a4
1816d2d
 
 
 
 
2c6e805
 
1816d2d
 
89cc8a4
 
1816d2d
11166a4
1816d2d
 
 
 
 
 
 
2c6e805
 
89cc8a4
 
1816d2d
 
 
89cc8a4
1816d2d
 
 
89cc8a4
 
11166a4
1816d2d
 
 
 
 
 
 
2c6e805
 
89cc8a4
 
1816d2d
 
 
89cc8a4
1816d2d
 
 
89cc8a4
 
2c6e805
 
 
 
 
89cc8a4
 
 
 
2c6e805
 
89cc8a4
 
 
0e0ee20
89cc8a4
2caf84c
89cc8a4
0b93385
 
1441e58
07d3eff
8648a3b
504da62
 
8648a3b
2caf84c
2c6e805
1816d2d
 
2caf84c
3c05113
 
 
 
07d3eff
2c6e805
1500e0d
504da62
11166a4
504da62
 
1816d2d
d6802e8
 
1816d2d
aff90d1
0d921b6
2c6e805
0d921b6
89cc8a4
 
 
7238fe3
 
 
89cc8a4
 
7238fe3
 
 
0e0ee20
457748c
0e0ee20
 
 
 
8648a3b
 
0e0ee20
2caf84c
 
0257a93
2caf84c
 
457748c
89cc8a4
8dce9c7
0e0ee20
2c6d128
e300c6e
 
a5fbe4d
2c6d128
 
 
1cbd1d7
2c6d128
 
 
 
 
 
 
 
1816d2d
5ecece8
 
1816d2d
89cc8a4
11166a4
1816d2d
 
 
89cc8a4
11166a4
1816d2d
 
 
89cc8a4
2c6e805
 
 
 
89cc8a4
5ecece8
0257a93
2caf84c
2c6e805
89cc8a4
2caf84c
 
 
2c6e805
89cc8a4
2caf84c
07d3eff
 
0e0ee20
1816d2d
3c05113
0e0ee20
 
 
2c6e805
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
                                                      vae=good_vae,
                                                      transformer=pipe.transformer,
                                                      text_encoder=pipe.text_encoder,
                                                      tokenizer=pipe.tokenizer,
                                                      text_encoder_2=pipe.text_encoder_2,
                                                      tokenizer_2=pipe.tokenizer_2,
                                                      torch_dtype=dtype
                                                     )

MAX_SEED = 2**32-1

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def update_selection(evt: gr.SelectData, selected_indices, width, height):
    selected_index = evt.index
    selected_indices = selected_indices or []
    if selected_index in selected_indices:
        # LoRA is already selected, remove it
        selected_indices.remove(selected_index)
    else:
        if len(selected_indices) < 2:
            selected_indices.append(selected_index)
        else:
            raise gr.Error("You can select up to 2 LoRAs only.")

    # Initialize outputs
    selected_info_1 = ""
    selected_info_2 = ""
    lora_scale_1 = 0.95
    lora_scale_2 = 0.95
    lora_image_1 = None
    lora_image_2 = None
    if len(selected_indices) >= 1:
        lora1 = loras[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = loras[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
        lora_image_2 = lora2['image']

    # Update prompt placeholder based on last selected LoRA
    if selected_indices:
        last_selected_lora = loras[selected_indices[-1]]
        new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
    else:
        new_placeholder = "Type a prompt after selecting a LoRA"

    return (
        gr.update(placeholder=new_placeholder),
        selected_info_1,
        selected_info_2,
        selected_indices,
        lora_scale_1,
        lora_scale_2,
        width,
        height,
        lora_image_1,
        lora_image_2,
    )

def remove_lora_1(selected_indices):
    selected_indices = selected_indices or []
    if len(selected_indices) >= 1:
        selected_indices.pop(0)
    # Update selected_info_1 and selected_info_2
    selected_info_1 = ""
    selected_info_2 = ""
    lora_scale_1 = 0.95
    lora_scale_2 = 0.95
    lora_image_1 = None
    lora_image_2 = None
    if len(selected_indices) >= 1:
        lora1 = loras[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = loras[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
        lora_image_2 = lora2['image']
    return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2

def remove_lora_2(selected_indices):
    selected_indices = selected_indices or []
    if len(selected_indices) >= 2:
        selected_indices.pop(1)
    # Update selected_info_1 and selected_info_2
    selected_info_1 = ""
    selected_info_2 = ""
    lora_scale_1 = 0.95
    lora_scale_2 = 0.95
    lora_image_1 = None
    lora_image_2 = None
    if len(selected_indices) >= 1:
        lora1 = loras[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = loras[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
        lora_image_2 = lora2['image']
    return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2

def randomize_loras(selected_indices):
    if len(loras) < 2:
        raise gr.Error("Not enough LoRAs to randomize.")
    selected_indices = random.sample(range(len(loras)), 2)
    lora1 = loras[selected_indices[0]]
    lora2 = loras[selected_indices[1]]
    selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
    selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
    lora_scale_1 = 0.95
    lora_scale_2 = 0.95
    lora_image_1 = lora1['image']
    lora_image_2 = lora2['image']
    return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2

# ... (rest of your code remains unchanged)

# Update your UI components to include image previews
run_lora.zerogpu = True

css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.custom_lora_card{margin-bottom: 1em}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''

with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
    title = gr.HTML(
        """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> LoRA Lab</h1>""",
        elem_id="title",
    )
    selected_indices = gr.State([])
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
        with gr.Column(scale=1):
            generate_button = gr.Button("Generate", variant="primary")
    with gr.Row():
        with gr.Column(scale=1):
            randomize_button = gr.Button("🎲", variant="secondary", scale=1, min_width=50)
        with gr.Column(scale=4):
            lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False)
            selected_info_1 = gr.Markdown("Select a LoRA 1")
            lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
            remove_button_1 = gr.Button("Remove LoRA 1")
        with gr.Column(scale=4):
            lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False)
            selected_info_2 = gr.Markdown("Select a LoRA 2")
            lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
            remove_button_2 = gr.Button("Remove LoRA 2")
    with gr.Row():
        with gr.Column():
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Gallery",
                allow_preview=False,
                columns=3,
                elem_id="gallery"
            )
            with gr.Group():
                custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
                gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
            custom_lora_info = gr.HTML(visible=False)
            custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
        with gr.Column():
            progress_bar = gr.Markdown(elem_id="progress", visible=False)
            result = gr.Image(label="Generated Image")
    with gr.Row():
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                input_image = gr.Image(label="Input image", type="filepath")
                image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
    
    gallery.select(
        update_selection,
        inputs=[selected_indices, width, height],
        outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2]
    )
    remove_button_1.click(
        remove_lora_1,
        inputs=[selected_indices],
        outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )
    remove_button_2.click(
        remove_lora_2,
        inputs=[selected_indices],
        outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )
    randomize_button.click(
        randomize_loras,
        inputs=[selected_indices],
        outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )
    custom_lora.change(
        add_custom_lora,
        inputs=[custom_lora, selected_indices],
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )
    custom_lora_button.click(
        remove_custom_lora,
        inputs=[custom_lora_info, custom_lora_button, selected_indices],
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
    )
    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height],
        outputs=[result, seed, progress_bar]
    )

app.queue()
app.launch()