File size: 18,385 Bytes
2caf84c
0e0ee20
 
 
 
 
 
e300c6e
c724573
e300c6e
2caf84c
7039ded
607d766
e2c1d93
0e0ee20
 
 
 
 
 
c724573
 
463aefd
c724573
 
 
 
e300c6e
 
 
 
 
 
 
 
 
0e0ee20
f3e96f9
c59400c
c724573
 
e2c1d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11166a4
0e0ee20
 
11166a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ecece8
 
 
 
 
 
 
2c3cc35
 
 
11166a4
 
 
 
 
 
 
 
 
 
 
 
0e0ee20
0b93385
11166a4
aad2ddd
5b82e60
72cad74
463aefd
c724573
e93307c
72cad74
463aefd
72cad74
 
463aefd
c724573
 
 
 
72cad74
e300c6e
11166a4
e300c6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11166a4
 
 
 
e300c6e
11166a4
 
 
 
 
 
 
 
 
 
e93307c
11166a4
 
 
 
 
 
 
 
 
 
 
c724573
11166a4
69da03e
e300c6e
69da03e
11166a4
 
 
 
 
 
 
e2c1d93
11166a4
 
 
 
e300c6e
0e0ee20
e2c1d93
 
 
e300c6e
11166a4
 
e300c6e
 
11166a4
e300c6e
 
 
 
11166a4
e300c6e
 
 
 
3c05113
2caf84c
11166a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2caf84c
 
 
 
 
 
 
 
 
 
 
 
 
 
40d0ad1
2caf84c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4df41e1
2caf84c
 
4df41e1
2caf84c
4df41e1
2caf84c
 
 
 
0b93385
 
1441e58
07d3eff
8648a3b
504da62
 
8648a3b
2caf84c
11166a4
 
2caf84c
3c05113
 
 
 
07d3eff
1500e0d
504da62
11166a4
504da62
 
11166a4
 
d6802e8
 
11166a4
02302e4
07d3eff
0e0ee20
457748c
0e0ee20
 
 
 
8648a3b
 
0e0ee20
2caf84c
 
 
 
 
11166a4
 
 
 
 
 
 
 
 
 
 
457748c
3c05113
8dce9c7
0e0ee20
 
2c6d128
e300c6e
 
a5fbe4d
2c6d128
 
 
1cbd1d7
2c6d128
 
 
 
 
 
 
 
0e0ee20
5ecece8
 
11166a4
 
 
 
 
 
 
 
 
 
 
 
5ecece8
2caf84c
 
 
11166a4
2caf84c
 
 
11166a4
2caf84c
07d3eff
 
0e0ee20
11166a4
3c05113
0e0ee20
 
 
11166a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
                                                      vae=good_vae,
                                                      transformer=pipe.transformer,
                                                      text_encoder=pipe.text_encoder,
                                                      tokenizer=pipe.tokenizer,
                                                      text_encoder_2=pipe.text_encoder_2,
                                                      tokenizer_2=pipe.tokenizer_2,
                                                      torch_dtype=dtype
                                                     )

MAX_SEED = 2**32-1

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def update_selection(evt: gr.SelectData, width, height, selected_lora1, selected_lora2):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"

    # Initialize outputs
    outputs = []

    if selected_lora1 is None:
        selected_lora1 = selected_lora
        selected_lora1_info = f"### LoRA 1 Selected: [{selected_lora1['title']}](https://huggingface.co/{selected_lora1['repo']}) ✨"
        lora_scale1_visible = True
        remove_lora1_visible = True
    elif selected_lora2 is None:
        selected_lora2 = selected_lora
        selected_lora2_info = f"### LoRA 2 Selected: [{selected_lora2['title']}](https://huggingface.co/{selected_lora2['repo']}) ✨"
        lora_scale2_visible = True
        remove_lora2_visible = True
    else:
        raise gr.Error("You can only select up to two LoRAs. Please remove one before selecting another.")

    # Update placeholder
    placeholder_update = gr.update(placeholder=new_placeholder)

    # For width and height adjustment
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
        else:
            width = 1024
            height = 1024

    return placeholder_update, selected_lora1, selected_lora2, selected_lora1_info, selected_lora2_info, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), width, height

def remove_selected_lora1(selected_lora1, selected_lora1_info):
    selected_lora1 = None
    selected_lora1_info = ""
    return selected_lora1, selected_lora1_info, gr.update(visible=False), gr.update(visible=False)

def remove_selected_lora2(selected_lora2, selected_lora2_info):
    selected_lora2 = None
    selected_lora2_info = ""
    return selected_lora2, selected_lora2_info, gr.update(visible=False), gr.update(visible=False)

@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    with calculateDuration("Generating image"):
        # Generate image
        for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt_mash,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,
        ):
            yield img

@spaces.GPU(duration=70)
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
    generator = torch.Generator(device="cuda").manual_seed(seed)
    pipe_i2i.to("cuda")
    image_input = load_image(image_input_path)
    final_image = pipe_i2i(
        prompt=prompt_mash,
        image=image_input,
        strength=image_strength,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        output_type="pil",
    ).images[0]
    return final_image 

def run_lora(prompt, image_input, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, selected_lora1, selected_lora2, lora_scale1, lora_scale2, progress=gr.Progress(track_tqdm=True)):
    if selected_lora1 is None and selected_lora2 is None:
        raise gr.Error("You must select at least one LoRA before proceeding.")
    
    # Build the prompt mash
    prompt_mash = prompt

    # Handle trigger words and positions
    trigger_words = []
    if selected_lora1 is not None:
        trigger_word1 = selected_lora1.get("trigger_word", "")
        if trigger_word1:
            if selected_lora1.get("trigger_position") == "prepend":
                trigger_words.insert(0, trigger_word1)
            else:
                trigger_words.append(trigger_word1)
    if selected_lora2 is not None:
        trigger_word2 = selected_lora2.get("trigger_word", "")
        if trigger_word2:
            if selected_lora2.get("trigger_position") == "prepend":
                trigger_words.insert(0, trigger_word2)
            else:
                trigger_words.append(trigger_word2)
    # Combine trigger words with the prompt
    if trigger_words:
        prompt_mash = f"{' '.join(trigger_words)} {prompt}"

    with calculateDuration("Unloading LoRAs"):
        pipe.unload_lora_weights()
        pipe_i2i.unload_lora_weights()
        
    # Load LoRA weights with respective scales
    with calculateDuration("Loading LoRA weights"):
        if image_input is not None:
            if selected_lora1 is not None:
                pipe_i2i.load_lora_weights(selected_lora1['repo'], weight_name=selected_lora1.get('weights'), scale=lora_scale1)
            if selected_lora2 is not None:
                pipe_i2i.load_lora_weights(selected_lora2['repo'], weight_name=selected_lora2.get('weights'), scale=lora_scale2)
        else:
            if selected_lora1 is not None:
                pipe.load_lora_weights(selected_lora1['repo'], weight_name=selected_lora1.get('weights'), scale=lora_scale1)
            if selected_lora2 is not None:
                pipe.load_lora_weights(selected_lora2['repo'], weight_name=selected_lora2.get('weights'), scale=lora_scale2)
                
    # Set random seed for reproducibility
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
            
    if image_input is not None:
        final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
        yield final_image, seed, gr.update(visible=False)
    else:
        image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
        # Consume the generator to get the final image
        final_image = None
        step_counter = 0
        for image in image_generator:
            step_counter += 1
            final_image = image
            progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
            yield image, seed, gr.update(value=progress_bar, visible=True)
        yield final_image, seed, gr.update(value=progress_bar, visible=False)
        
def get_huggingface_safetensors(link):
    split_link = link.split("/")
    if(len(split_link) == 2):
        model_card = ModelCard.load(link)
        base_model = model_card.data.get("base_model")
        print(base_model)
        if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
            raise Exception("Not a FLUX LoRA!")
        image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
        trigger_word = model_card.data.get("instance_prompt", "")
        image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
        fs = HfFileSystem()
        try:
            list_of_files = fs.ls(link, detail=False)
            for file in list_of_files:
                if(file.endswith(".safetensors")):
                    safetensors_name = file.split("/")[-1]
                if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
                    image_elements = file.split("/")
                    image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
        except Exception as e:
            print(e)
            gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
            raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
        return split_link[1], link, safetensors_name, trigger_word, image_url

def check_custom_model(link):
    if(link.startswith("https://")):
        if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
    else: 
        return get_huggingface_safetensors(link)

def add_custom_lora(custom_lora):
    global loras
    if(custom_lora):
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            print(f"Loaded custom LoRA: {repo}")
            card = f'''
            <div class="custom_lora_card">
              <span>Loaded custom LoRA:</span>
              <div class="card_internal">
                <img src="{image}" />
                <div>
                    <h3>{title}</h3>
                    <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
                </div>
              </div>
            </div>
            '''
            existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
            if(not existing_item_index):
                new_item = {
                    "image": image,
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(new_item)
                existing_item_index = len(loras)
                loras.append(new_item)
        
            return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
        except Exception as e:
            gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
            return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
    else:
        return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

def remove_custom_lora():
    return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

run_lora.zerogpu = True

css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.custom_lora_card .card_internal{display: flex;height: 100px;margin-top: .5em}
.custom_lora_card .card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
    title = gr.HTML(
        """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> LoRA Lab</h1>""",
        elem_id="title",
    )
    selected_lora1 = gr.State(None)
    selected_lora2 = gr.State(None)
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting LoRAs")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
    with gr.Row():
        with gr.Column():
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Gallery",
                allow_preview=False,
                columns=3,
                elem_id="gallery"
            )
            with gr.Group():
                custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
                gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
            custom_lora_info = gr.HTML(visible=False)
            custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
            # Selected LoRAs section
            gr.Markdown("### Selected LoRAs")
            with gr.Row():
                with gr.Column():
                    selected_lora1_info = gr.Markdown("", visible=False)
                    lora_scale1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95, visible=False)
                    remove_lora1_button = gr.Button("Remove LoRA 1", visible=False)
                with gr.Column():
                    selected_lora2_info = gr.Markdown("", visible=False)
                    lora_scale2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95, visible=False)
                    remove_lora2_button = gr.Button("Remove LoRA 2", visible=False)
        with gr.Column():
            progress_bar = gr.Markdown(elem_id="progress",visible=False)
            result = gr.Image(label="Generated Image")

    with gr.Row():
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                input_image = gr.Image(label="Input image", type="filepath")
                image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)

    gallery.select(
        update_selection,
        inputs=[width, height, selected_lora1, selected_lora2],
        outputs=[prompt, selected_lora1, selected_lora2, selected_lora1_info, selected_lora2_info, lora_scale1, remove_lora1_button, lora_scale2, remove_lora2_button, width, height]
    )
    remove_lora1_button.click(
        remove_selected_lora1,
        inputs=[selected_lora1, selected_lora1_info],
        outputs=[selected_lora1, selected_lora1_info, lora_scale1, remove_lora1_button]
    )
    remove_lora2_button.click(
        remove_selected_lora2,
        inputs=[selected_lora2, selected_lora2_info],
        outputs=[selected_lora2, selected_lora2_info, lora_scale2, remove_lora2_button]
    )
    custom_lora.input(
        add_custom_lora,
        inputs=[custom_lora],
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_lora1_info, selected_lora2_info, prompt]
    )
    custom_lora_button.click(
        remove_custom_lora,
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_lora1_info, selected_lora2_info, custom_lora]
    )
    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, input_image, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, selected_lora1, selected_lora2, lora_scale1, lora_scale2],
        outputs=[result, seed, progress_bar]
    )

app.queue()
app.launch()