whisper-webui / src /whisperContainer.py
aadnk's picture
Add progress listener to none/VAD
33a2c1e
raw
history blame
6.46 kB
# External programs
import os
import sys
from typing import List
import whisper
from whisper import Whisper
from src.config import ModelConfig
from src.hooks.whisperProgressHook import ProgressListener, create_progress_listener_handle
from src.modelCache import GLOBAL_MODEL_CACHE, ModelCache
class WhisperContainer:
def __init__(self, model_name: str, device: str = None, download_root: str = None,
cache: ModelCache = None, models: List[ModelConfig] = []):
self.model_name = model_name
self.device = device
self.download_root = download_root
self.cache = cache
# Will be created on demand
self.model = None
# List of known models
self.models = models
def get_model(self):
if self.model is None:
if (self.cache is None):
self.model = self._create_model()
else:
model_key = "WhisperContainer." + self.model_name + ":" + (self.device if self.device else '')
self.model = self.cache.get(model_key, self._create_model)
return self.model
def ensure_downloaded(self):
"""
Ensure that the model is downloaded. This is useful if you want to ensure that the model is downloaded before
passing the container to a subprocess.
"""
# Warning: Using private API here
try:
root_dir = self.download_root
model_config = self.get_model_config()
if root_dir is None:
root_dir = os.path.join(os.path.expanduser("~"), ".cache", "whisper")
if self.model_name in whisper._MODELS:
whisper._download(whisper._MODELS[self.model_name], root_dir, False)
else:
# If the model is not in the official list, see if it needs to be downloaded
model_config.download_url(root_dir)
return True
except Exception as e:
# Given that the API is private, it could change at any time. We don't want to crash the program
print("Error pre-downloading model: " + str(e))
return False
def get_model_config(self) -> ModelConfig:
"""
Get the model configuration for the model.
"""
for model in self.models:
if model.name == self.model_name:
return model
return None
def _create_model(self):
print("Loading whisper model " + self.model_name)
model_config = self.get_model_config()
# Note that the model will not be downloaded in the case of an official Whisper model
model_path = model_config.download_url(self.download_root)
return whisper.load_model(model_path, device=self.device, download_root=self.download_root)
def create_callback(self, language: str = None, task: str = None, initial_prompt: str = None, **decodeOptions: dict):
"""
Create a WhisperCallback object that can be used to transcript audio files.
Parameters
----------
language: str
The target language of the transcription. If not specified, the language will be inferred from the audio content.
task: str
The task - either translate or transcribe.
initial_prompt: str
The initial prompt to use for the transcription.
decodeOptions: dict
Additional options to pass to the decoder. Must be pickleable.
Returns
-------
A WhisperCallback object.
"""
return WhisperCallback(self, language=language, task=task, initial_prompt=initial_prompt, **decodeOptions)
# This is required for multiprocessing
def __getstate__(self):
return { "model_name": self.model_name, "device": self.device, "download_root": self.download_root, "models": self.models }
def __setstate__(self, state):
self.model_name = state["model_name"]
self.device = state["device"]
self.download_root = state["download_root"]
self.models = state["models"]
self.model = None
# Depickled objects must use the global cache
self.cache = GLOBAL_MODEL_CACHE
class WhisperCallback:
def __init__(self, model_container: WhisperContainer, language: str = None, task: str = None, initial_prompt: str = None, **decodeOptions: dict):
self.model_container = model_container
self.language = language
self.task = task
self.initial_prompt = initial_prompt
self.decodeOptions = decodeOptions
def invoke(self, audio, segment_index: int, prompt: str, detected_language: str, progress_listener: ProgressListener = None):
"""
Peform the transcription of the given audio file or data.
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor]
The audio file to transcribe, or the audio data as a numpy array or torch tensor.
segment_index: int
The target language of the transcription. If not specified, the language will be inferred from the audio content.
task: str
The task - either translate or transcribe.
prompt: str
The prompt to use for the transcription.
detected_language: str
The detected language of the audio file.
Returns
-------
The result of the Whisper call.
"""
model = self.model_container.get_model()
if progress_listener is not None:
with create_progress_listener_handle(progress_listener):
return self._transcribe(model, audio, segment_index, prompt, detected_language)
else:
return self._transcribe(model, audio, segment_index, prompt, detected_language)
def _transcribe(self, model: Whisper, audio, segment_index: int, prompt: str, detected_language: str):
return model.transcribe(audio, \
language=self.language if self.language else detected_language, task=self.task, \
initial_prompt=self._concat_prompt(self.initial_prompt, prompt) if segment_index == 0 else prompt, \
**self.decodeOptions
)
def _concat_prompt(self, prompt1, prompt2):
if (prompt1 is None):
return prompt2
elif (prompt2 is None):
return prompt1
else:
return prompt1 + " " + prompt2