Spaces:
Runtime error
Runtime error
File size: 17,924 Bytes
31f7bdb 8d120bf 95261ed 8d120bf 05a2178 3fadc6e 8d120bf 3fadc6e 20f75ae c0e541b 31f7bdb 95261ed 8d120bf 05a2178 883c794 c52f09b 95261ed c0e541b 7ce6041 4514e2e 7ce6041 533d92e 6a308c6 20f75ae 93c4867 05a2178 883c794 c0e541b 95261ed c0e541b 31f7bdb c0e541b 05a2178 f288ceb 31f7bdb 05a2178 01fddc0 20f75ae 48d8572 533d92e 883c794 fdd892b 31f7bdb 533d92e 74b1efd 48d8572 74b1efd fdd892b 74b1efd fdd892b 74b1efd 71950a8 fdd892b 71950a8 fdd892b 883c794 fdd892b 3fadc6e 95261ed 48d8572 84fa1f8 74b1efd 95261ed 74b1efd d906b98 5bbbb16 95261ed 74b1efd d906b98 5bbbb16 95261ed d906b98 5bbbb16 95261ed 74b1efd 5bbbb16 95261ed 74b1efd 31f7bdb 35b79d6 74b1efd 95261ed 31f7bdb 95261ed c0e541b 31f7bdb c0e541b 31f7bdb c0e541b 31f7bdb c0e541b 31f7bdb c0e541b 95261ed 84fa1f8 5bbbb16 d906b98 5bbbb16 d906b98 5bbbb16 d906b98 5bbbb16 d906b98 74b1efd 883c794 31f7bdb 74b1efd 883c794 fdd892b 74b1efd fdd892b 3fadc6e 8f5637c fdd892b 3fadc6e fdd892b 8d120bf 883c794 6a308c6 883c794 3fadc6e 883c794 3fadc6e 883c794 7ce6041 883c794 05a2178 31f7bdb cbc9717 31f7bdb c0e541b 31f7bdb 05a2178 31f7bdb 20f75ae c0e541b 05a2178 95261ed 01fddc0 20f75ae 95261ed 71950a8 05a2178 f5884f3 38cc8a7 31f7bdb 93c4867 883c794 084aa80 74b1efd 31f7bdb 71950a8 8d120bf 71950a8 31f7bdb d906b98 48d8572 d906b98 3fadc6e 8d120bf 3fadc6e 8d120bf 3fadc6e 7ce6041 31f7bdb 05a2178 71950a8 95261ed 724f5fc 95261ed 31f7bdb c0e541b 31f7bdb 20f75ae 95261ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import math
from typing import Iterator
import argparse
from io import StringIO
import os
import pathlib
import tempfile
import torch
from src.modelCache import ModelCache
from src.vadParallel import ParallelContext, ParallelTranscription
# External programs
import ffmpeg
# UI
import gradio as gr
from src.download import ExceededMaximumDuration, download_url
from src.utils import slugify, write_srt, write_vtt
from src.vad import AbstractTranscription, NonSpeechStrategy, PeriodicTranscriptionConfig, TranscriptionConfig, VadPeriodicTranscription, VadSileroTranscription
from src.whisperContainer import WhisperContainer
# Limitations (set to -1 to disable)
DEFAULT_INPUT_AUDIO_MAX_DURATION = 600 # seconds
# Whether or not to automatically delete all uploaded files, to save disk space
DELETE_UPLOADED_FILES = True
# Gradio seems to truncate files without keeping the extension, so we need to truncate the file prefix ourself
MAX_FILE_PREFIX_LENGTH = 17
# Limit auto_parallel to a certain number of CPUs (specify vad_cpu_cores to get a higher number)
MAX_AUTO_CPU_CORES = 8
LANGUAGES = [
"English", "Chinese", "German", "Spanish", "Russian", "Korean",
"French", "Japanese", "Portuguese", "Turkish", "Polish", "Catalan",
"Dutch", "Arabic", "Swedish", "Italian", "Indonesian", "Hindi",
"Finnish", "Vietnamese", "Hebrew", "Ukrainian", "Greek", "Malay",
"Czech", "Romanian", "Danish", "Hungarian", "Tamil", "Norwegian",
"Thai", "Urdu", "Croatian", "Bulgarian", "Lithuanian", "Latin",
"Maori", "Malayalam", "Welsh", "Slovak", "Telugu", "Persian",
"Latvian", "Bengali", "Serbian", "Azerbaijani", "Slovenian",
"Kannada", "Estonian", "Macedonian", "Breton", "Basque", "Icelandic",
"Armenian", "Nepali", "Mongolian", "Bosnian", "Kazakh", "Albanian",
"Swahili", "Galician", "Marathi", "Punjabi", "Sinhala", "Khmer",
"Shona", "Yoruba", "Somali", "Afrikaans", "Occitan", "Georgian",
"Belarusian", "Tajik", "Sindhi", "Gujarati", "Amharic", "Yiddish",
"Lao", "Uzbek", "Faroese", "Haitian Creole", "Pashto", "Turkmen",
"Nynorsk", "Maltese", "Sanskrit", "Luxembourgish", "Myanmar", "Tibetan",
"Tagalog", "Malagasy", "Assamese", "Tatar", "Hawaiian", "Lingala",
"Hausa", "Bashkir", "Javanese", "Sundanese"
]
class WhisperTranscriber:
def __init__(self, input_audio_max_duration: float = DEFAULT_INPUT_AUDIO_MAX_DURATION, vad_process_timeout: float = None, vad_cpu_cores: int = 1, delete_uploaded_files: bool = DELETE_UPLOADED_FILES):
self.model_cache = ModelCache()
self.parallel_device_list = None
self.gpu_parallel_context = None
self.cpu_parallel_context = None
self.vad_process_timeout = vad_process_timeout
self.vad_cpu_cores = vad_cpu_cores
self.vad_model = None
self.inputAudioMaxDuration = input_audio_max_duration
self.deleteUploadedFiles = delete_uploaded_files
def set_parallel_devices(self, vad_parallel_devices: str):
self.parallel_device_list = [ device.strip() for device in vad_parallel_devices.split(",") ] if vad_parallel_devices else None
def set_auto_parallel(self, auto_parallel: bool):
if auto_parallel:
if torch.cuda.is_available():
self.parallel_device_list = [ str(gpu_id) for gpu_id in range(torch.cuda.device_count())]
self.vad_cpu_cores = min(os.cpu_count(), MAX_AUTO_CPU_CORES)
print("[Auto parallel] Using GPU devices " + str(self.parallel_device_list) + " and " + str(self.vad_cpu_cores) + " CPU cores for VAD/transcription.")
def transcribe_webui(self, modelName, languageName, urlData, uploadFile, microphoneData, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow):
try:
source, sourceName = self.__get_source(urlData, uploadFile, microphoneData)
try:
selectedLanguage = languageName.lower() if len(languageName) > 0 else None
selectedModel = modelName if modelName is not None else "base"
model = WhisperContainer(model_name=selectedModel, cache=self.model_cache)
# Execute whisper
result = self.transcribe_file(model, source, selectedLanguage, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow)
# Write result
downloadDirectory = tempfile.mkdtemp()
filePrefix = slugify(sourceName, allow_unicode=True)
download, text, vtt = self.write_result(result, filePrefix, downloadDirectory)
return download, text, vtt
finally:
# Cleanup source
if self.deleteUploadedFiles:
print("Deleting source file " + source)
os.remove(source)
except ExceededMaximumDuration as e:
return [], ("[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s"), "[ERROR]"
def transcribe_file(self, model: WhisperContainer, audio_path: str, language: str, task: str = None, vad: str = None,
vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1, **decodeOptions: dict):
initial_prompt = decodeOptions.pop('initial_prompt', None)
if ('task' in decodeOptions):
task = decodeOptions.pop('task')
# Callable for processing an audio file
whisperCallable = model.create_callback(language, task, initial_prompt, **decodeOptions)
# The results
if (vad == 'silero-vad'):
# Silero VAD where non-speech gaps are transcribed
process_gaps = self._create_silero_config(NonSpeechStrategy.CREATE_SEGMENT, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow)
result = self.process_vad(audio_path, whisperCallable, self.vad_model, process_gaps)
elif (vad == 'silero-vad-skip-gaps'):
# Silero VAD where non-speech gaps are simply ignored
skip_gaps = self._create_silero_config(NonSpeechStrategy.SKIP, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow)
result = self.process_vad(audio_path, whisperCallable, self.vad_model, skip_gaps)
elif (vad == 'silero-vad-expand-into-gaps'):
# Use Silero VAD where speech-segments are expanded into non-speech gaps
expand_gaps = self._create_silero_config(NonSpeechStrategy.EXPAND_SEGMENT, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow)
result = self.process_vad(audio_path, whisperCallable, self.vad_model, expand_gaps)
elif (vad == 'periodic-vad'):
# Very simple VAD - mark every 5 minutes as speech. This makes it less likely that Whisper enters an infinite loop, but
# it may create a break in the middle of a sentence, causing some artifacts.
periodic_vad = VadPeriodicTranscription()
period_config = PeriodicTranscriptionConfig(periodic_duration=vadMaxMergeSize, max_prompt_window=vadPromptWindow)
result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config)
else:
if (self._has_parallel_devices()):
# Use a simple period transcription instead, as we need to use the parallel context
periodic_vad = VadPeriodicTranscription()
period_config = PeriodicTranscriptionConfig(periodic_duration=math.inf, max_prompt_window=1)
result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config)
else:
# Default VAD
result = whisperCallable.invoke(audio_path, 0, None, None)
return result
def process_vad(self, audio_path, whisperCallable, vadModel: AbstractTranscription, vadConfig: TranscriptionConfig):
if (not self._has_parallel_devices()):
# No parallel devices, so just run the VAD and Whisper in sequence
return vadModel.transcribe(audio_path, whisperCallable, vadConfig)
gpu_devices = self.parallel_device_list
if (gpu_devices is None or len(gpu_devices) == 0):
# No GPU devices specified, pass the current environment variable to the first GPU process. This may be NULL.
gpu_devices = [os.environ.get("CUDA_VISIBLE_DEVICES", None)]
# Create parallel context if needed
if (self.gpu_parallel_context is None):
# Create a context wih processes and automatically clear the pool after 1 hour of inactivity
self.gpu_parallel_context = ParallelContext(num_processes=len(gpu_devices), auto_cleanup_timeout_seconds=self.vad_process_timeout)
# We also need a CPU context for the VAD
if (self.cpu_parallel_context is None):
self.cpu_parallel_context = ParallelContext(num_processes=self.vad_cpu_cores, auto_cleanup_timeout_seconds=self.vad_process_timeout)
parallel_vad = ParallelTranscription()
return parallel_vad.transcribe_parallel(transcription=vadModel, audio=audio_path, whisperCallable=whisperCallable,
config=vadConfig, cpu_device_count=self.vad_cpu_cores, gpu_devices=gpu_devices,
cpu_parallel_context=self.cpu_parallel_context, gpu_parallel_context=self.gpu_parallel_context)
def _has_parallel_devices(self):
return (self.parallel_device_list is not None and len(self.parallel_device_list) > 0) or self.vad_cpu_cores > 1
def _concat_prompt(self, prompt1, prompt2):
if (prompt1 is None):
return prompt2
elif (prompt2 is None):
return prompt1
else:
return prompt1 + " " + prompt2
def _create_silero_config(self, non_speech_strategy: NonSpeechStrategy, vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1):
# Use Silero VAD
if (self.vad_model is None):
self.vad_model = VadSileroTranscription()
config = TranscriptionConfig(non_speech_strategy = non_speech_strategy,
max_silent_period=vadMergeWindow, max_merge_size=vadMaxMergeSize,
segment_padding_left=vadPadding, segment_padding_right=vadPadding,
max_prompt_window=vadPromptWindow)
return config
def write_result(self, result: dict, source_name: str, output_dir: str):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
text = result["text"]
language = result["language"]
languageMaxLineWidth = self.__get_max_line_width(language)
print("Max line width " + str(languageMaxLineWidth))
vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth)
srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth)
output_files = []
output_files.append(self.__create_file(srt, output_dir, source_name + "-subs.srt"));
output_files.append(self.__create_file(vtt, output_dir, source_name + "-subs.vtt"));
output_files.append(self.__create_file(text, output_dir, source_name + "-transcript.txt"));
return output_files, text, vtt
def clear_cache(self):
self.model_cache.clear()
self.vad_model = None
def __get_source(self, urlData, uploadFile, microphoneData):
if urlData:
# Download from YouTube
source = download_url(urlData, self.inputAudioMaxDuration)[0]
else:
# File input
source = uploadFile if uploadFile is not None else microphoneData
if self.inputAudioMaxDuration > 0:
# Calculate audio length
audioDuration = ffmpeg.probe(source)["format"]["duration"]
if float(audioDuration) > self.inputAudioMaxDuration:
raise ExceededMaximumDuration(videoDuration=audioDuration, maxDuration=self.inputAudioMaxDuration, message="Video is too long")
file_path = pathlib.Path(source)
sourceName = file_path.stem[:MAX_FILE_PREFIX_LENGTH] + file_path.suffix
return source, sourceName
def __get_max_line_width(self, language: str) -> int:
if (language and language.lower() in ["japanese", "ja", "chinese", "zh"]):
# Chinese characters and kana are wider, so limit line length to 40 characters
return 40
else:
# TODO: Add more languages
# 80 latin characters should fit on a 1080p/720p screen
return 80
def __get_subs(self, segments: Iterator[dict], format: str, maxLineWidth: int) -> str:
segmentStream = StringIO()
if format == 'vtt':
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
elif format == 'srt':
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
else:
raise Exception("Unknown format " + format)
segmentStream.seek(0)
return segmentStream.read()
def __create_file(self, text: str, directory: str, fileName: str) -> str:
# Write the text to a file
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file:
file.write(text)
return file.name
def close(self):
print("Closing parallel contexts")
self.clear_cache()
if (self.gpu_parallel_context is not None):
self.gpu_parallel_context.close()
if (self.cpu_parallel_context is not None):
self.cpu_parallel_context.close()
def create_ui(input_audio_max_duration, share=False, server_name: str = None, server_port: int = 7860,
default_model_name: str = "medium", default_vad: str = None, vad_parallel_devices: str = None, vad_process_timeout: float = None, vad_cpu_cores: int = 1, auto_parallel: bool = False):
ui = WhisperTranscriber(input_audio_max_duration, vad_process_timeout, vad_cpu_cores)
# Specify a list of devices to use for parallel processing
ui.set_parallel_devices(vad_parallel_devices)
ui.set_auto_parallel(auto_parallel)
ui_description = "Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse "
ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition "
ui_description += " as well as speech translation and language identification. "
ui_description += "\n\n\n\nFor longer audio files (>10 minutes) not in English, it is recommended that you select Silero VAD (Voice Activity Detector) in the VAD option."
if input_audio_max_duration > 0:
ui_description += "\n\n" + "Max audio file length: " + str(input_audio_max_duration) + " s"
ui_article = "Read the [documentation here](https://huggingface.co/spaces/aadnk/whisper-webui/blob/main/docs/options.md)"
demo = gr.Interface(fn=ui.transcribe_webui, description=ui_description, article=ui_article, inputs=[
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value=default_model_name, label="Model"),
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"),
gr.Text(label="URL (YouTube, etc.)"),
gr.Audio(source="upload", type="filepath", label="Upload Audio"),
gr.Audio(source="microphone", type="filepath", label="Microphone Input"),
gr.Dropdown(choices=["transcribe", "translate"], label="Task"),
gr.Dropdown(choices=["none", "silero-vad", "silero-vad-skip-gaps", "silero-vad-expand-into-gaps", "periodic-vad"], value=default_vad, label="VAD"),
gr.Number(label="VAD - Merge Window (s)", precision=0, value=5),
gr.Number(label="VAD - Max Merge Size (s)", precision=0, value=30),
gr.Number(label="VAD - Padding (s)", precision=None, value=1),
gr.Number(label="VAD - Prompt Window (s)", precision=None, value=3)
], outputs=[
gr.File(label="Download"),
gr.Text(label="Transcription"),
gr.Text(label="Segments")
])
demo.launch(share=share, server_name=server_name, server_port=server_port)
# Clean up
ui.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--input_audio_max_duration", type=int, default=DEFAULT_INPUT_AUDIO_MAX_DURATION, help="Maximum audio file length in seconds, or -1 for no limit.")
parser.add_argument("--share", type=bool, default=False, help="True to share the app on HuggingFace.")
parser.add_argument("--server_name", type=str, default=None, help="The host or IP to bind to. If None, bind to localhost.")
parser.add_argument("--server_port", type=int, default=7860, help="The port to bind to.")
parser.add_argument("--default_model_name", type=str, default="medium", help="The default model name.")
parser.add_argument("--default_vad", type=str, default="silero-vad", help="The default VAD.")
parser.add_argument("--vad_parallel_devices", type=str, default="", help="A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing.")
parser.add_argument("--vad_cpu_cores", type=int, default=1, help="The number of CPU cores to use for VAD pre-processing.")
parser.add_argument("--vad_process_timeout", type=float, default="1800", help="The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout.")
parser.add_argument("--auto_parallel", type=bool, default=False, help="True to use all available GPUs and CPU cores for processing. Use vad_cpu_cores/vad_parallel_devices to specify the number of CPU cores/GPUs to use.")
args = parser.parse_args().__dict__
create_ui(**args) |