Spaces:
Runtime error
Runtime error
import re | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
from datetime import date | |
base_model = AutoModelForCausalLM.from_pretrained( | |
'meta-llama/Llama-2-7b-chat-hf', | |
trust_remote_code=True, | |
device_map="auto", | |
) | |
model = PeftModel.from_pretrained( | |
base_model, | |
'FinGPT/fingpt-forecaster_dow30_llama2-7b_lora' | |
) | |
model = model.eval() | |
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-chat-hf') | |
def construct_prompt(ticker, date, n_weeks): | |
return ", ".join([ticker, date, str(n_weeks)]) | |
def get_curday(): | |
return date.today().strftime("%Y-%m-%d") | |
def predict(ticker, date, n_weeks): | |
prompt = construct_prompt(ticker, date, n_weeks) | |
# inputs = tokenizer( | |
# prompt, return_tensors='pt', | |
# padding=False, max_length=4096 | |
# ) | |
# inputs = {key: value.to(model.device) for key, value in inputs.items()} | |
# res = model.generate( | |
# **inputs, max_length=4096, do_sample=True, | |
# eos_token_id=tokenizer.eos_token_id, | |
# use_cache=True | |
# ) | |
# output = tokenizer.decode(res[0], skip_special_tokens=True) | |
# answer = re.sub(r'.*\[/INST\]\s*', '', output, flags=re.DOTALL) | |
answer = prompt | |
return answer | |
demo = gr.Interface( | |
predict, | |
inputs=[ | |
gr.Textbox( | |
label="Ticker", | |
value="AAPL", | |
info="Companys from Dow-30 are recommended" | |
), | |
gr.Textbox( | |
label="Date", | |
value=get_curday, | |
info="Date from which the prediction is made, use format 'yyyy-mm-dd'" | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=4, | |
value=3, | |
step=1, | |
label="n_weeks", | |
info="Information of the past n weeks will be utilized, choose between 1 and 4" | |
), | |
], | |
outputs="Response" | |
) | |
demo.launch() | |