No1r97's picture
Update app.py
812370d
raw
history blame
1.95 kB
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from datetime import date
base_model = AutoModelForCausalLM.from_pretrained(
'meta-llama/Llama-2-7b-chat-hf',
trust_remote_code=True,
device_map="auto",
)
model = PeftModel.from_pretrained(
base_model,
'FinGPT/fingpt-forecaster_dow30_llama2-7b_lora'
)
model = model.eval()
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-chat-hf')
def construct_prompt(ticker, date, n_weeks):
return ", ".join([ticker, date, str(n_weeks)])
def get_curday():
return date.today().strftime("%Y-%m-%d")
def predict(ticker, date, n_weeks):
prompt = construct_prompt(ticker, date, n_weeks)
# inputs = tokenizer(
# prompt, return_tensors='pt',
# padding=False, max_length=4096
# )
# inputs = {key: value.to(model.device) for key, value in inputs.items()}
# res = model.generate(
# **inputs, max_length=4096, do_sample=True,
# eos_token_id=tokenizer.eos_token_id,
# use_cache=True
# )
# output = tokenizer.decode(res[0], skip_special_tokens=True)
# answer = re.sub(r'.*\[/INST\]\s*', '', output, flags=re.DOTALL)
answer = prompt
return answer
demo = gr.Interface(
predict,
inputs=[
gr.Textbox(
label="Ticker",
value="AAPL",
info="Companys from Dow-30 are recommended"
),
gr.Textbox(
label="Date",
value=get_curday,
info="Date from which the prediction is made, use format 'yyyy-mm-dd'"
),
gr.Slider(
minimum=1,
maximum=4,
value=3,
step=1,
label="n_weeks",
info="Information of the past n weeks will be utilized, choose between 1 and 4"
),
],
outputs="Response"
)
demo.launch()