|
from fastapi import FastAPI, File, UploadFile, HTTPException |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
import requests |
|
import json |
|
import tempfile |
|
import os |
|
|
|
app = FastAPI() |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
model_id = "openai/whisper-large-v3-turbo" |
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
) |
|
model.to(device) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
|
|
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "") |
|
OPENROUTER_URL = "https://openrouter.ai/api/v1/chat/completions" |
|
|
|
@app.post("/transcribe-analyze/") |
|
async def transcribe_analyze(file: UploadFile = File(...)): |
|
try: |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio: |
|
temp_audio.write(await file.read()) |
|
temp_audio_path = temp_audio.name |
|
|
|
|
|
transcription_result = pipe(temp_audio_path, return_timestamps=True) |
|
transcription = transcription_result["text"] |
|
|
|
|
|
response = requests.post( |
|
url=OPENROUTER_URL, |
|
headers={ |
|
"Authorization": f"Bearer {OPENROUTER_API_KEY}", |
|
"Content-Type": "application/json" |
|
}, |
|
data=json.dumps({ |
|
"model": "meta-llama/llama-3.1-70b-instruct:free", |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": f"You are an AI Assistant that is given the transcript between a call agent and a lead, and you must classify if the lead happily agreed to the booking. The response should have 4 parts: 1. Appointment Booked: Yes/No, 2. Short reason for your answer, 3. Short summary of the call, 4. Lead's overall emotion. \n Here is the transcription: {transcription}", |
|
} |
|
] |
|
}) |
|
) |
|
|
|
ai_response = response.json().get("choices", [{}])[0].get("message", {}).get("content", "No response from AI.") |
|
|
|
|
|
os.remove(temp_audio_path) |
|
|
|
return {"transcription": transcription, "ai_response": ai_response} |
|
|
|
except Exception as e: |
|
return HTTPException(status_code=500, detail=str(e)) |
|
|