Spaces:
Sleeping
Sleeping
ZubairAhmed777
commited on
Create app.py
Browse filesImage caption app
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
2 |
+
from PIL import Image
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Load BLIP processor and model
|
6 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
7 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
8 |
+
|
9 |
+
def generate_caption(image):
|
10 |
+
try:
|
11 |
+
# No need to open the image, Gradio provides it as a PIL object
|
12 |
+
inputs = processor(images=image, return_tensors="pt") # Use the image directly
|
13 |
+
|
14 |
+
# Generate caption
|
15 |
+
outputs = model.generate(**inputs)
|
16 |
+
|
17 |
+
# Decode and return the generated caption
|
18 |
+
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
19 |
+
return caption
|
20 |
+
except Exception as e:
|
21 |
+
return f"Error generating caption: {str(e)}"
|
22 |
+
|
23 |
+
# Create Gradio interface
|
24 |
+
iface = gr.Interface(
|
25 |
+
fn=generate_caption,
|
26 |
+
inputs=gr.Image(type="pil"),
|
27 |
+
outputs=gr.Textbox(label="Generated Caption"), # Use Textbox for text output
|
28 |
+
title="Image Captioning with BLIP",
|
29 |
+
description="Generate captions for your images using the BLIP model."
|
30 |
+
)
|
31 |
+
|
32 |
+
# Launch the interface
|
33 |
+
iface.launch()
|
34 |
+
|