Spaces:
Sleeping
Sleeping
File size: 1,147 Bytes
982307f 6eaea85 982307f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import gradio as gr
# Load BLIP processor and model
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
def generate_caption(image):
try:
# No need to open the image, Gradio provides it as a PIL object
inputs = processor(images=image, return_tensors="pt") # Use the image directly
# Generate caption
outputs = model.generate(**inputs)
# Decode and return the generated caption
caption = processor.decode(outputs[0], skip_special_tokens=True)
return caption
except Exception as e:
return f"Error generating caption: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=generate_caption,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(label="Generated Caption"), # Use Textbox for text output
title="Image Captioning",
description="Generate captions for your images"
)
# Launch the interface
iface.launch()
|