File size: 5,499 Bytes
7c1eee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from collections import namedtuple
from typing import List

ModelInfo = namedtuple("ModelInfo", ["simple_name", "link", "description"])
model_info = {}

def register_model_info(
    full_names: List[str], simple_name: str, link: str, description: str
):
    info = ModelInfo(simple_name, link, description)

    for full_name in full_names:
        model_info[full_name] = info

def get_model_info(name: str) -> ModelInfo:
    if name in model_info:
        return model_info[name]
    else:
        # To fix this, please use `register_model_info` to register your model
        return ModelInfo(
            name, "", "Register the description at fastchat/model/model_registry.py"
        )

def get_model_description_md(model_list):
    model_description_md = """
| | | |
| ---- | ---- | ---- |
"""
    ct = 0
    visited = set()
    for i, name in enumerate(model_list):
        minfo = get_model_info(name)
        if minfo.simple_name in visited:
            continue
        visited.add(minfo.simple_name)
        one_model_md = f"[{minfo.simple_name}]({minfo.link}): {minfo.description}"

        if ct % 3 == 0:
            model_description_md += "|"
        model_description_md += f" {one_model_md} |"
        if ct % 3 == 2:
            model_description_md += "\n"
        ct += 1
    return model_description_md

# regist text-to-shape generation models

register_model_info(
    ["dreamfusion"],
    "DreamFusion",
    "https://dreamfusion3d.github.io/",
    "Text-to-3D using 2D Diffusion and SDS Loss",
)

register_model_info(
    ["dreamgaussian"],
    "DreamGaussian",
    "https://github.com/dreamgaussian/dreamgaussian",
    "Generative Gaussian Splatting for Efficient 3D Content Creation",
)

register_model_info(
    ["fantasia3d"],
    "Fantasia3D",
    "https://fantasia3d.github.io/",
    "Disentangling Geometry and Appearance for High-quality Text-to-3D Content Creation",
)

register_model_info(
    ["latent-nerf"],
    "Latent-NeRF",
    "https://github.com/eladrich/latent-nerf",
    "Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures",
)

register_model_info(
    ["magic3d"],
    "Magic3D",
    "https://research.nvidia.com/labs/dir/magic3d/",
    "High-Resolution Text-to-3D Content Creation",
)

register_model_info(
    ["geodream"],
    "GeoDream",
    "https://mabaorui.github.io/GeoDream_page/",
    "Disentangling 2D and Geometric Priors for High-Fidelity and Consistent 3D Generation",
)

register_model_info(
    ["mvdream"],
    "MVDream",
    "https://github.com/bytedance/MVDream",
    "Multi-view Diffusion for 3D Generation",
)

register_model_info(
    ["prolificdreamer"],
    "ProlificDreamer",
    "https://ml.cs.tsinghua.edu.cn/prolificdreamer/",
    "High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation",
)

register_model_info(
    ["syncdreamer"],
    "SyncDreamer",
    "https://github.com/liuyuan-pal/SyncDreamer",
    "Generating Multiview-consistent Images from a Single-view Image",
)

register_model_info(
    ["wonder3d"],
    "Wonder3D",
    "https://github.com/xxlong0/Wonder3D",
    "Single Image to 3D using Cross-Domain Diffusion",
)

register_model_info(
    ["dreamcraft3d"],
    "Dreamcraft3d",
    "https://github.com/deepseek-ai/DreamCraft3D",
    "Hierarchical 3d generation with bootstrapped diffusion prior",
)


# register_model_info(
#     [],
#     "",
#     "",
#     "",
# )


# regist image edition models

register_model_info(
    ["zero123"],
    "Zero-1-to-3",
    "https://github.com/cvlab-columbia/zero123",
    "Zero-shot One Image to 3D Object",
)

register_model_info(
    ["stable-zero123", "zero123-xl"],
    "Stable Zero123",
    "https://stability.ai/news/stable-zero123-3d-generation",
    "Quality 3D Object Generation from Single Images",
)

register_model_info(
    ["magic123"],
    "Magic123",
    "https://guochengqian.github.io/project/magic123/",
    "One Image to High-Quality 3D Object Generation Using Both 2D and 3D Diffusion Priors",
)
    
register_model_info(
    ["imagedream"],
    "ImageDream",
    "https://github.com/bytedance/ImageDream",
    "Image-Prompt Multi-view Diffusion for 3D Generation",
)

register_model_info(
    ["lucid-dreamer"],
    "LucidDreamer",
    "https://github.com/EnVision-Research/LucidDreamer",
    "Towards High-Fidelity Text-to-3D Generation via Interval Score Matching",
)

register_model_info(
    ["make-it-3d"],
    "Make-It-3D",
    "https://github.com/junshutang/Make-It-3D",
    "High-Fidelity 3D Creation from A Single Image with Diffusion Prior",
)

register_model_info(
    ["triplane-gaussian"],
    "TriplaneGaussian",
    "https://github.com/VAST-AI-Research/TriplaneGaussian",
    "Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D Reconstruction with Transformers",
)

register_model_info(
    ["free3d"],
    "Free3D",
    "https://github.com/lyndonzheng/Free3D",
    "Consistent Novel View Synthesis without 3D Representation",
)

register_model_info(
    ["escher-net"],
    "EscherNet",
    "https://github.com/kxhit/EscherNet",
    "A Generative Model for Scalable View Synthesis",
)

register_model_info(
    ["v3d"],
    "V3D",
    "https://github.com/heheyas/V3D",
    "Video Diffusion Models are Effective 3D Generators",
)

register_model_info(
    ["lgm"],
    "LGM",
    "https://github.com/3DTopia/LGM",
    "Large Multi-View Gaussian Model for High-Resolution 3D Content Creation",
)

# register_model_info(
#     [],
#     "",
#     "",
#     "",
# )