|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import copy |
|
from dataclasses import dataclass, field |
|
import logging |
|
import pathlib |
|
from typing import Dict, Optional, Sequence |
|
|
|
import torch |
|
|
|
import transformers |
|
|
|
from seagull.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
from .seagull_trainer import SeagullTrainer |
|
|
|
from seagull import conversation as conversation_lib |
|
from seagull.model import * |
|
from seagull.mm_utils import tokenizer_image_token |
|
|
|
|
|
local_rank = None |
|
|
|
|
|
def rank0_print(*args): |
|
if local_rank == 0: |
|
print(*args) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") |
|
version: Optional[str] = field(default="v0") |
|
freeze_backbone: bool = field(default=False) |
|
tune_mm_mlp_adapter: bool = field(default=False) |
|
vision_tower: Optional[str] = field(default=None) |
|
mm_vision_select_layer: Optional[int] = field(default=-1) |
|
pretrain_mm_mlp_adapter: Optional[str] = field(default=None) |
|
mm_projector_type: Optional[str] = field(default='linear') |
|
mm_use_im_start_end: bool = field(default=False) |
|
mm_use_im_patch_token: bool = field(default=True) |
|
mm_vision_select_feature: Optional[str] = field(default="patch") |
|
|
|
@dataclass |
|
class DataArguments: |
|
lazy_preprocess: bool = False |
|
is_multimodal: bool = False |
|
sep_image_conv_front: bool = False |
|
image_token_len: int = 0 |
|
dataset_list: str = "LIVEC,BID,KONIQ,SPAQ" |
|
image_aspect_ratio: str = 'square' |
|
image_grid_pinpoints: Optional[str] = field(default=None) |
|
dataset_config: Optional[str] = field(default='./seagull/configs/stage1.json', |
|
metadata={'help': 'Path to the dataset config file.'}) |
|
|
|
@dataclass |
|
class TrainingArguments(transformers.TrainingArguments): |
|
cache_dir: Optional[str] = field(default=None) |
|
optim: str = field(default="adamw_torch") |
|
remove_unused_columns: bool = field(default=False) |
|
freeze_mm_mlp_adapter: bool = field(default=False) |
|
model_max_length: int = field( |
|
default=512, |
|
metadata={ |
|
"help": |
|
"Maximum sequence length. Sequences will be right padded (and possibly truncated)." |
|
}, |
|
) |
|
double_quant: bool = field( |
|
default=True, |
|
metadata={"help": "Compress the quantization statistics through double quantization."} |
|
) |
|
quant_type: str = field( |
|
default="nf4", |
|
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} |
|
) |
|
bits: int = field( |
|
default=16, |
|
metadata={"help": "How many bits to use."} |
|
) |
|
lora_enable: bool = False |
|
lora_r: int = 64 |
|
lora_alpha: int = 16 |
|
lora_dropout: float = 0.05 |
|
lora_weight_path: str = "" |
|
lora_bias: str = "none" |
|
mm_projector_lr: Optional[float] = None |
|
group_by_modality_length: bool = field(default=False) |
|
|
|
|
|
def maybe_zero_3(param, ignore_status=False, name=None): |
|
from deepspeed import zero |
|
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus |
|
if hasattr(param, "ds_id"): |
|
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: |
|
if not ignore_status: |
|
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") |
|
with zero.GatheredParameters([param]): |
|
param = param.data.detach().cpu().clone() |
|
else: |
|
param = param.detach().cpu().clone() |
|
return param |
|
|
|
|
|
|
|
def get_peft_state_maybe_zero_3(named_params, bias): |
|
if bias == "none": |
|
to_return = {k: t for k, t in named_params if "lora_" in k} |
|
elif bias == "all": |
|
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} |
|
elif bias == "lora_only": |
|
to_return = {} |
|
maybe_lora_bias = {} |
|
lora_bias_names = set() |
|
for k, t in named_params: |
|
if "lora_" in k: |
|
to_return[k] = t |
|
bias_name = k.split("lora_")[0] + "bias" |
|
lora_bias_names.add(bias_name) |
|
elif "bias" in k: |
|
maybe_lora_bias[k] = t |
|
for k, t in maybe_lora_bias: |
|
if bias_name in lora_bias_names: |
|
to_return[bias_name] = t |
|
else: |
|
raise NotImplementedError |
|
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} |
|
return to_return |
|
|
|
|
|
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): |
|
to_return = {k: t for k, t in named_params if "lora_" not in k} |
|
if require_grad_only: |
|
to_return = {k: t for k, t in to_return.items() if t.requires_grad} |
|
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} |
|
return to_return |
|
|
|
|
|
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): |
|
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} |
|
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} |
|
return to_return |
|
|
|
def find_all_linear_names(model): |
|
cls = torch.nn.Linear |
|
lora_module_names = set() |
|
multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler', "mask_extractor"] |
|
for name, module in model.named_modules(): |
|
if any(mm_keyword in name for mm_keyword in multimodal_keywords): |
|
continue |
|
if isinstance(module, cls): |
|
lora_module_names.add(name) |
|
rank0_print('Lora Finetunine: ', lora_module_names) |
|
if 'lm_head' in lora_module_names: |
|
lora_module_names.remove('lm_head') |
|
return list(lora_module_names) |
|
|
|
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, |
|
output_dir: str): |
|
"""Collects the state dict and dump to disk.""" |
|
|
|
if getattr(trainer.args, "tune_mm_mlp_adapter", False): |
|
|
|
keys_to_match = ['mm_projector'] |
|
if getattr(trainer.args, "use_im_start_end", False): |
|
keys_to_match.extend(['embed_tokens', 'embed_in']) |
|
|
|
weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match) |
|
trainer.model.config.save_pretrained(output_dir) |
|
|
|
current_folder = output_dir.split('/')[-1] |
|
parent_folder = os.path.dirname(output_dir) |
|
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: |
|
if current_folder.startswith('checkpoint-'): |
|
mm_projector_folder = os.path.join(parent_folder, "mm_projector") |
|
os.makedirs(mm_projector_folder, exist_ok=True) |
|
torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin')) |
|
else: |
|
torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) |
|
return |
|
|
|
if trainer.deepspeed: |
|
torch.cuda.synchronize() |
|
trainer.save_model(output_dir) |
|
return |
|
|
|
state_dict = trainer.model.state_dict() |
|
if trainer.args.should_save: |
|
cpu_state_dict = { |
|
key: value.cpu() |
|
for key, value in state_dict.items() |
|
} |
|
del state_dict |
|
trainer._save(output_dir, state_dict=cpu_state_dict) |
|
|
|
|
|
def smart_tokenizer_and_embedding_resize( |
|
special_tokens_dict: Dict, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
model: transformers.PreTrainedModel, |
|
): |
|
"""Resize tokenizer and embedding. |
|
|
|
Note: This is the unoptimized version that may make your embedding size not be divisible by 64. |
|
""" |
|
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = model.get_input_embeddings().weight.data |
|
output_embeddings = model.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
|
|
def _tokenize_fn(strings: Sequence[str], |
|
tokenizer: transformers.PreTrainedTokenizer) -> Dict: |
|
"""Tokenize a list of strings.""" |
|
tokenized_list = [ |
|
tokenizer( |
|
text, |
|
return_tensors="pt", |
|
padding="longest", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
) for text in strings |
|
] |
|
input_ids = labels = [ |
|
tokenized.input_ids[0] for tokenized in tokenized_list |
|
] |
|
input_ids_lens = labels_lens = [ |
|
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() |
|
for tokenized in tokenized_list |
|
] |
|
return dict( |
|
input_ids=input_ids, |
|
labels=labels, |
|
input_ids_lens=input_ids_lens, |
|
labels_lens=labels_lens, |
|
) |
|
|
|
|
|
def _mask_targets(target, tokenized_lens, speakers): |
|
|
|
cur_idx = tokenized_lens[0] |
|
tokenized_lens = tokenized_lens[1:] |
|
target[:cur_idx] = IGNORE_INDEX |
|
for tokenized_len, speaker in zip(tokenized_lens, speakers): |
|
if speaker == "human": |
|
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX |
|
cur_idx += tokenized_len |
|
|
|
|
|
def _add_speaker_and_signal(header, source, get_conversation=True): |
|
"""Add speaker and start/end signal on each round.""" |
|
BEGIN_SIGNAL = "### " |
|
END_SIGNAL = "\n" |
|
conversation = header |
|
for sentence in source: |
|
from_str = sentence["from"] |
|
if from_str.lower() == "human": |
|
from_str = conversation_lib.default_conversation.roles[0] |
|
elif from_str.lower() == "gpt": |
|
from_str = conversation_lib.default_conversation.roles[1] |
|
else: |
|
from_str = 'unknown' |
|
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " + |
|
sentence["value"] + END_SIGNAL) |
|
if get_conversation: |
|
conversation += sentence["value"] |
|
conversation += BEGIN_SIGNAL |
|
return conversation |
|
|
|
|
|
def preprocess_multimodal( |
|
sources: Sequence[str], |
|
data_args: DataArguments, |
|
cur_token_len: int = 0 |
|
) -> Dict: |
|
|
|
for source in sources: |
|
for sentence in source: |
|
if DEFAULT_IMAGE_TOKEN in sentence['value']: |
|
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() |
|
sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value'] |
|
sentence['value'] = sentence['value'].strip() |
|
if "mmtag" in conversation_lib.default_conversation.version: |
|
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '<Image>' + DEFAULT_IMAGE_TOKEN + '</Image>') |
|
replace_token = DEFAULT_IMAGE_TOKEN |
|
if data_args.mm_use_im_start_end: |
|
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN |
|
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) |
|
|
|
return sources |
|
|
|
|
|
def preprocess_llama_2( |
|
sources, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
has_image: bool = False |
|
) -> Dict: |
|
conv = conversation_lib.default_conversation.copy() |
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} |
|
|
|
|
|
conversations = [] |
|
for i, source in enumerate(sources): |
|
if roles[source[0]["from"]] != conv.roles[0]: |
|
|
|
source = source[1:] |
|
|
|
conv.messages = [] |
|
for j, sentence in enumerate(source): |
|
role = roles[sentence["from"]] |
|
assert role == conv.roles[j % 2], f"{i}" |
|
conv.append_message(role, sentence["value"]) |
|
conversations.append(conv.get_prompt()) |
|
|
|
|
|
|
|
if has_image: |
|
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) |
|
else: |
|
input_ids = tokenizer( |
|
conversations, |
|
return_tensors="pt", |
|
padding="longest", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
).input_ids |
|
|
|
targets = input_ids.clone() |
|
|
|
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2 |
|
|
|
|
|
sep = "[/INST] " |
|
for conversation, target in zip(conversations, targets): |
|
total_len = int(target.ne(tokenizer.pad_token_id).sum()) |
|
|
|
rounds = conversation.split(conv.sep2) |
|
cur_len = 1 |
|
target[:cur_len] = IGNORE_INDEX |
|
for i, rou in enumerate(rounds): |
|
if rou == "": |
|
break |
|
|
|
parts = rou.split(sep) |
|
if len(parts) != 2: |
|
break |
|
parts[0] += sep |
|
|
|
if has_image: |
|
round_len = len(tokenizer_image_token(rou, tokenizer)) |
|
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 |
|
else: |
|
round_len = len(tokenizer(rou).input_ids) |
|
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 |
|
|
|
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX |
|
|
|
cur_len += round_len |
|
target[cur_len:] = IGNORE_INDEX |
|
|
|
if cur_len < tokenizer.model_max_length: |
|
if cur_len != total_len: |
|
target[:] = IGNORE_INDEX |
|
rank0_print( |
|
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." |
|
f" (ignored)" |
|
) |
|
|
|
return dict( |
|
input_ids=input_ids, |
|
labels=targets, |
|
) |
|
|
|
def preprocess_v1( |
|
sources, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
has_image: bool = False |
|
) -> Dict: |
|
conv = conversation_lib.default_conversation.copy() |
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} |
|
|
|
|
|
conversations = [] |
|
for i, source in enumerate(sources): |
|
if roles[source[0]["from"]] != conv.roles[0]: |
|
|
|
source = source[1:] |
|
|
|
conv.messages = [] |
|
for j, sentence in enumerate(source): |
|
role = roles[sentence["from"]] |
|
assert role == conv.roles[j % 2], f"{i}" |
|
conv.append_message(role, sentence["value"]) |
|
conversations.append(conv.get_prompt()) |
|
|
|
|
|
|
|
if has_image: |
|
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) |
|
else: |
|
input_ids = tokenizer( |
|
conversations, |
|
return_tensors="pt", |
|
padding="longest", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
).input_ids |
|
|
|
targets = input_ids.clone() |
|
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO |
|
|
|
|
|
sep = conv.sep + conv.roles[1] + ": " |
|
for conversation, target in zip(conversations, targets): |
|
total_len = int(target.ne(tokenizer.pad_token_id).sum()) |
|
|
|
rounds = conversation.split(conv.sep2) |
|
cur_len = 1 |
|
target[:cur_len] = IGNORE_INDEX |
|
for i, rou in enumerate(rounds): |
|
if rou == "": |
|
break |
|
|
|
parts = rou.split(sep) |
|
if len(parts) != 2: |
|
break |
|
parts[0] += sep |
|
|
|
if has_image: |
|
round_len = len(tokenizer_image_token(rou, tokenizer)) |
|
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 |
|
else: |
|
round_len = len(tokenizer(rou).input_ids) |
|
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 |
|
|
|
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX |
|
|
|
cur_len += round_len |
|
target[cur_len:] = IGNORE_INDEX |
|
|
|
|
|
if cur_len < tokenizer.model_max_length: |
|
if cur_len != total_len: |
|
target[:] = IGNORE_INDEX |
|
rank0_print( |
|
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." |
|
f" (ignored)" |
|
) |
|
return dict( |
|
input_ids=input_ids, |
|
labels=targets, |
|
) |
|
|
|
|
|
def preprocess_plain( |
|
sources: Sequence[str], |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
) -> Dict: |
|
|
|
conversations = [] |
|
for source in sources: |
|
assert len(source) == 2 |
|
assert DEFAULT_IMAGE_TOKEN in source[0]['value'] |
|
source[0]['value'] = DEFAULT_IMAGE_TOKEN |
|
conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep |
|
conversations.append(conversation) |
|
|
|
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] |
|
targets = copy.deepcopy(input_ids) |
|
for target, source in zip(targets, sources): |
|
tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer)) |
|
target[:tokenized_len] = IGNORE_INDEX |
|
|
|
return dict(input_ids=input_ids, labels=targets) |
|
|
|
|
|
def preprocess( |
|
sources: Sequence[str], |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
has_image: bool = False |
|
) -> Dict: |
|
""" |
|
Given a list of sources, each is a conversation list. This transform: |
|
1. Add signal '### ' at the beginning each sentence, with end signal '\n'; |
|
2. Concatenate conversations together; |
|
3. Tokenize the concatenated conversation; |
|
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. |
|
""" |
|
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN: |
|
return preprocess_plain(sources, tokenizer) |
|
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2: |
|
return preprocess_llama_2(sources, tokenizer, has_image=has_image) |
|
if conversation_lib.default_conversation.version.startswith("v1"): |
|
return preprocess_v1(sources, tokenizer, has_image=has_image) |
|
|
|
conversations = [] |
|
for source in sources: |
|
header = f"{conversation_lib.default_conversation.system}\n\n" |
|
conversation = _add_speaker_and_signal(header, source) |
|
conversations.append(conversation) |
|
|
|
def get_tokenize_len(prompts): |
|
return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts] |
|
|
|
if has_image: |
|
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] |
|
else: |
|
conversations_tokenized = _tokenize_fn(conversations, tokenizer) |
|
input_ids = conversations_tokenized["input_ids"] |
|
|
|
targets = copy.deepcopy(input_ids) |
|
for target, source in zip(targets, sources): |
|
if has_image: |
|
tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source]) |
|
else: |
|
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"] |
|
speakers = [sentence["from"] for sentence in source] |
|
_mask_targets(target, tokenized_lens, speakers) |
|
|
|
return dict(input_ids=input_ids, labels=targets) |
|
|
|
|
|
import time |
|
def train(): |
|
global local_rank |
|
|
|
parser = transformers.HfArgumentParser( |
|
(ModelArguments, DataArguments, TrainingArguments)) |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
local_rank = training_args.local_rank |
|
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) |
|
|
|
bnb_model_from_pretrained_args = {} |
|
if training_args.bits in [4, 8]: |
|
from transformers import BitsAndBytesConfig |
|
bnb_model_from_pretrained_args.update(dict( |
|
device_map={"": training_args.device}, |
|
load_in_4bit=training_args.bits == 4, |
|
load_in_8bit=training_args.bits == 8, |
|
quantization_config=BitsAndBytesConfig( |
|
load_in_4bit=training_args.bits == 4, |
|
load_in_8bit=training_args.bits == 8, |
|
llm_int8_threshold=6.0, |
|
llm_int8_has_fp16_weight=False, |
|
bnb_4bit_compute_dtype=compute_dtype, |
|
bnb_4bit_use_double_quant=training_args.double_quant, |
|
bnb_4bit_quant_type=training_args.quant_type |
|
) |
|
)) |
|
|
|
if model_args.vision_tower is not None: |
|
model = SeagullLlamaForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=training_args.cache_dir, |
|
**bnb_model_from_pretrained_args |
|
) |
|
else: |
|
model = transformers.LlamaForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=training_args.cache_dir, |
|
**bnb_model_from_pretrained_args |
|
) |
|
model.config.use_cache = False |
|
|
|
if model_args.freeze_backbone: |
|
model.model.requires_grad_(False) |
|
|
|
if training_args.bits in [4, 8]: |
|
from peft import prepare_model_for_kbit_training |
|
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) |
|
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) |
|
|
|
if training_args.gradient_checkpointing: |
|
if hasattr(model, "enable_input_require_grads"): |
|
model.enable_input_require_grads() |
|
else: |
|
def make_inputs_require_grad(module, input, output): |
|
output.requires_grad_(True) |
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) |
|
|
|
if training_args.lora_enable: |
|
from peft import LoraConfig, get_peft_model |
|
lora_config = LoraConfig( |
|
r=training_args.lora_r, |
|
lora_alpha=training_args.lora_alpha, |
|
target_modules=find_all_linear_names(model), |
|
lora_dropout=training_args.lora_dropout, |
|
bias=training_args.lora_bias, |
|
task_type="CAUSAL_LM", |
|
) |
|
if training_args.bits == 16: |
|
if training_args.bf16: |
|
model.to(torch.bfloat16) |
|
if training_args.fp16: |
|
model.to(torch.float16) |
|
rank0_print("Adding LoRA adapters...") |
|
model = get_peft_model(model, lora_config) |
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=training_args.cache_dir, |
|
model_max_length=training_args.model_max_length, |
|
padding_side="right", |
|
use_fast=True, |
|
) |
|
|
|
if model_args.version == "v0": |
|
if tokenizer.pad_token is None: |
|
smart_tokenizer_and_embedding_resize( |
|
special_tokens_dict=dict(pad_token="[PAD]"), |
|
tokenizer=tokenizer, |
|
model=model, |
|
) |
|
elif model_args.version == "v0.5": |
|
tokenizer.pad_token = tokenizer.unk_token |
|
else: |
|
tokenizer.pad_token = tokenizer.unk_token |
|
if model_args.version in conversation_lib.conv_templates: |
|
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] |
|
else: |
|
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"] |
|
|
|
if model_args.vision_tower is not None: |
|
model.get_model().initialize_vision_modules( |
|
model_args=model_args, |
|
fsdp=training_args.fsdp |
|
) |
|
|
|
vision_tower = model.get_vision_tower() |
|
vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) |
|
|
|
data_args.image_processor = vision_tower.image_processor |
|
|
|
rank0_print(data_args.image_processor) |
|
data_args.is_multimodal = True |
|
|
|
model.config.image_aspect_ratio = data_args.image_aspect_ratio |
|
model.config.image_grid_pinpoints = data_args.image_grid_pinpoints |
|
|
|
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter |
|
if model_args.tune_mm_mlp_adapter: |
|
model.requires_grad_(False) |
|
for p in model.get_model().mm_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter |
|
if training_args.freeze_mm_mlp_adapter: |
|
for p in model.get_model().mm_projector.parameters(): |
|
p.requires_grad = False |
|
|
|
if training_args.bits in [4, 8]: |
|
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device) |
|
|
|
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end |
|
training_args.use_im_start_end = model_args.mm_use_im_start_end |
|
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token |
|
model.config.mm_projector_lr = training_args.mm_projector_lr |
|
model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) |
|
|
|
if training_args.bits in [4, 8]: |
|
from peft.tuners.lora import LoraLayer |
|
for name, module in model.named_modules(): |
|
if isinstance(module, LoraLayer): |
|
if training_args.bf16: |
|
module = module.to(torch.bfloat16) |
|
if 'norm' in name: |
|
module = module.to(torch.float32) |
|
if 'lm_head' in name or 'embed_tokens' in name: |
|
if hasattr(module, 'weight'): |
|
if training_args.bf16 and module.weight.dtype == torch.float32: |
|
module = module.to(torch.bfloat16) |
|
|
|
from ..datasets.data_modules import make_multitask_data_module |
|
data_args.dataset_list = data_args.dataset_list.split(',') |
|
rank0_print('Training on: ', data_args.dataset_list) |
|
data_module = make_multitask_data_module(tokenizer=tokenizer, |
|
data_args=data_args) |
|
|
|
if os.environ.get('TRAIN_MASK_MODULE', None): |
|
for n, p in model.named_parameters(): |
|
if 'mask_extractor' not in n: |
|
p.requires_grad = False |
|
else: |
|
p.requires_grad = True |
|
|
|
if os.environ.get('TRAIN_MASK_MODULE_STAGE3', None): |
|
for n, p in model.named_parameters(): |
|
|
|
if 'mm_projector' in n or 'mask_extractor' in n: |
|
p.requires_grad = True |
|
|
|
trainer = SeagullTrainer(model=model, |
|
tokenizer=tokenizer, |
|
args=training_args, |
|
**data_module) |
|
|
|
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): |
|
trainer.train(resume_from_checkpoint=True) |
|
else: |
|
trainer.train() |
|
|
|
|
|
trainer.save_state() |
|
|
|
model.config.use_cache = True |
|
|
|
if training_args.lora_enable: |
|
state_dict = get_peft_state_maybe_zero_3( |
|
model.named_parameters(), training_args.lora_bias |
|
) |
|
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( |
|
model.named_parameters() |
|
) |
|
if training_args.local_rank == 0 or training_args.local_rank == -1: |
|
model.config.save_pretrained(training_args.output_dir) |
|
model.save_pretrained(training_args.output_dir, state_dict=state_dict) |
|
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin')) |
|
else: |
|
safe_save_model_for_hf_trainer(trainer=trainer, |
|
output_dir=training_args.output_dir) |
|
|