|
from typing import List, Optional, Tuple, Union |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import AutoConfig, AutoModelForCausalLM, \ |
|
LlamaConfig, LlamaModel, LlamaForCausalLM |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from ..seagull_arch import SeagullMetaModel, SeagullMetaForCausalLM |
|
from ..layer import MaskExtractor |
|
|
|
class SeagullConfig(LlamaConfig): |
|
model_type = "seagull" |
|
|
|
class SeagullLlamaModel(SeagullMetaModel, LlamaModel): |
|
config_class = SeagullConfig |
|
|
|
def __init__(self, config: LlamaConfig): |
|
super(SeagullLlamaModel, self).__init__(config) |
|
|
|
class SeagullLlamaForCausalLM(LlamaForCausalLM, SeagullMetaForCausalLM): |
|
config_class = SeagullConfig |
|
|
|
def __init__(self, config): |
|
super(LlamaForCausalLM, self).__init__(config) |
|
self.model = SeagullLlamaModel(config) |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.mask_extractor = MaskExtractor() |
|
|
|
self.post_init() |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
img_metas = None, |
|
masks = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
preprocessed_img_dict = None, |
|
return_dict: Optional[bool] = None, |
|
cropped_img: Optional[torch.FloatTensor] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, masks, attention_mask, past_key_values, labels, images, preprocessed_img_dict=preprocessed_img_dict, cropped_img=cropped_img) |
|
|
|
if inputs_embeds is not None: |
|
inputs_embeds = inputs_embeds.bfloat16() |
|
|
|
self.model = self.model.bfloat16() |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
|
|
hidden_states = outputs[0] |
|
self.lm_head = self.lm_head.to(hidden_states.dtype) |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"images": kwargs.get("images", None), |
|
} |
|
) |
|
return model_inputs |
|
|
|
AutoConfig.register("seagull", SeagullConfig) |
|
AutoModelForCausalLM.register(SeagullConfig, SeagullLlamaForCausalLM) |
|
|