File size: 5,132 Bytes
8fa1f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import cv2
from PIL import Image
import numpy as np
import torch
import gradio as gr

class ImageSketcher(gr.Image):
    """
    Code is from https://github.com/jshilong/GPT4RoI/blob/7c157b5f33914f21cfbc804fb301d3ce06324193/gpt4roi/app.py#L365

    Fix the bug of gradio.Image that cannot upload with tool == 'sketch'.
    """

    is_template = True  # Magic to make this work with gradio.Block, don't remove unless you know what you're doing.

    def __init__(self, **kwargs):
        super().__init__(tool='boxes', **kwargs)

    def preprocess(self, x):
        if x is None:
            return x
        if self.tool == 'boxes' and self.source in ['upload', 'webcam']:
            if isinstance(x, str):
                x = {'image': x, 'boxes': []}
            else:
                assert isinstance(x, dict)
                assert isinstance(x['image'], str)
                assert isinstance(x['boxes'], list)
        x = super().preprocess(x)
        return x
    
def process_mask_to_show(mask):
    '''
        Process the mask to show on the gradio.Image
    '''
    mask = np.array(mask > 0.1, dtype=np.uint8) * 255
    mask_stacked = np.stack([mask] * 3, axis=-1)

    return mask_stacked

def img_add_masks(img_, colored_mask, mask, linewidth=2):
    if type(img_) is np.ndarray:
        img = Image.fromarray(img_, mode='RGB').convert('RGBA')
    else:
        img = img_.copy()
    h, w = img.height, img.width
    # contour
    temp = np.zeros((h, w, 1))
    contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    cv2.drawContours(temp, contours, -1, (255, 255, 255), linewidth)
    color = np.array([1, 1, 1, 1])
    contour_mask = temp * color.reshape(1, 1, -1)

    overlay_inner = Image.fromarray(colored_mask.astype(np.uint8), 'RGBA')
    img.paste(overlay_inner, (0, 0), overlay_inner)

    overlay_contour = Image.fromarray(contour_mask.astype(np.uint8), 'RGBA')
    img.paste(overlay_contour, (0, 0), overlay_contour)
    return img

def gen_colored_masks(
        annotation,
        random_color=False,
):
    """
    Code is largely based on https://github.com/CASIA-IVA-Lab/FastSAM/blob/4d153e909f0ad9c8ecd7632566e5a24e21cf0071/utils/tools_gradio.py#L130
    """
    device = annotation.device
    mask_sum = annotation.shape[0]
    height = annotation.shape[1]
    weight = annotation.shape[2]
    areas = torch.sum(annotation, dim=(1, 2))
    sorted_indices = torch.argsort(areas, descending=False)
    annotation = annotation[sorted_indices]

    index = (annotation != 0).to(torch.long).argmax(dim=0)
    if random_color:
        color = torch.rand((mask_sum, 1, 1, 3)).to(device)
    else:
        color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
            [30 / 255, 144 / 255, 255 / 255]
        ).to(device)
    transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6
    visual = torch.cat([color, transparency], dim=-1)
    mask_image = torch.unsqueeze(annotation, -1) * visual

    mask = torch.zeros((height, weight, 4)).to(device)
    h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
    indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))

    mask[h_indices, w_indices, :] = mask_image[indices]
    mask_cpu = mask.cpu().numpy()

    return mask_cpu, sorted_indices

def mask_foreground(mask, trans=0.6, random_color=True):
    if random_color:
        color = np.concatenate([np.random.random(3) * 255, np.array([trans * 255])], axis=0)
    else:
        color = np.array([30, 144, 255, trans * 255])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)

    return mask_image


def mask_background(mask, trans=0.5):
    h, w = mask.shape[-2:]
    mask_image = (1 - mask.reshape(h, w, 1)) * np.array([0, 0, 0, trans * 255])

    return mask_image


def mask_select_point(all_masks, output_mask_2_raw, mask_order, evt: gr.SelectData):
    h, w = output_mask_2_raw.height, output_mask_2_raw.width
    pointed_mask = None
    for i in range(len(mask_order)):
        idx = mask_order[i]
        msk = all_masks[idx]
        if msk[evt.index[1], evt.index[0]] == 1:
            pointed_mask = msk.copy()
            break

    if pointed_mask is not None:
        contours, hierarchy = cv2.findContours(pointed_mask.astype("uint8"), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        ret = output_mask_2_raw.copy()

        temp = np.zeros((h, w, 1))
        contours, _ = cv2.findContours(msk.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        cv2.drawContours(temp, contours, -1, (255, 255, 255), 3)
        color = np.array([1, 1, 1, 1])
        contour_mask = temp * color.reshape(1, 1, -1)

        colored_mask = mask_background(pointed_mask)

        overlay_inner = Image.fromarray(colored_mask.astype(np.uint8), 'RGBA')
        ret.paste(overlay_inner, (0, 0), overlay_inner)

        overlay_contour = Image.fromarray(contour_mask.astype(np.uint8), 'RGBA')
        ret.paste(overlay_contour, (0, 0), overlay_contour)

        return ret, pointed_mask
    else:
        return output_mask_2_raw, None