File size: 7,164 Bytes
8fa1f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
from seagull.utils import disable_torch_init
from transformers import AutoTokenizer, CLIPImageProcessor
from seagull.model.language_model.seagull_llama import SeagullLlamaForCausalLM
from seagull.mm_utils import tokenizer_image_token
from seagull.conversation import conv_templates, SeparatorStyle
from seagull.constants import IMAGE_TOKEN_INDEX
from seagull.train.train import DataArguments

from functools import partial
import os
import numpy as np
import cv2
from typing import List
from PIL import Image

class Seagull():
    def __init__(self, model_path, device='cuda'):
        disable_torch_init()
        model_path = os.path.expanduser(model_path)
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, model_max_length=2048, padding_side="right", use_fast=True)
        self.model = SeagullLlamaForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16,).to(device)
        self.tokenizer.pad_token = self.tokenizer.unk_token

        self.image_processor = CLIPImageProcessor(do_resize=True, size={"shortest_edge":512}, resample=3,  do_center_crop=True, crop_size={"height": 512, "width": 512},
                                                    do_rescale=True, rescale_factor=0.00392156862745098, do_normalize=True, image_mean=[0.48145466, 0.4578275, 0.40821073],
                                                    image_std=[0.26862954, 0.26130258, 0.27577711], do_convert_rgb=True, )
        
        spi_tokens = ['<global>', '<local>']
        self.tokenizer.add_tokens(spi_tokens, special_tokens=True)
        
        for m in self.model.modules():
            m.tokenizer = self.tokenizer

        vision_tower = self.model.get_vision_tower()
        if not vision_tower.is_loaded:
            vision_tower.load_model()
        vision_tower.to(dtype=torch.float16, device=device)

        begin_str = "<image>\nThis provides an overview of the image.\n Please answer the following questions about the provided region. Note: Distortions include: blur, colorfulness, compression, contrast exposure and noise.\n Here is the region <global><local>. "
        
        instruction = {
            'distortion analysis': 'Provide the distortion type of this region.',
            'quality score': 'Analyze the quality of this region.',
            'importance score': 'Consider the impact of this region on the overall image quality. Analyze its importance to the overall image quality.'
        }
        
        self.ids_input = {}
        for ins_type, ins in instruction.items():
            conv = conv_templates['seagull_v1'].copy()
            qs = begin_str + ins
            conv.append_message(conv.roles[0], qs)
            conv.append_message(conv.roles[1], None)
            prompt = conv.get_prompt()
            self.ids_input[ins_type] = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.model.device)

        self.stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        
    def init_image(self, img):
        if isinstance(img, dict):
            img = img['image']
        elif isinstance(img, List):
            img = cv2.imread(img[0])
            img = img[:, :, ::-1]
        h_, w_ = img.shape[:2]
        if h_ > 512:
            ratio = 512 / h_
            new_h, new_w = int(h_ * ratio), int(w_ * ratio)
            preprocessed_img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
        else:
            preprocessed_img = img.copy()

        return (preprocessed_img, preprocessed_img, preprocessed_img)

    def preprocess(self, img):
        image = self.image_processor.preprocess(img,
                                do_center_crop=False,
                                return_tensors='pt')['pixel_values'][0]

        image = torch.nn.functional.interpolate(image.unsqueeze(0),
                                                size=(512, 512),
                                                mode='bilinear',
                                                align_corners=False).squeeze(0)
        
        return image
    
    def seagull_predict(self, img, mask, instruct_type):
        image = self.preprocess(img)
        
        mask = np.array(mask, dtype=np.int)
        ys, xs = np.where(mask > 0)
        if len(xs) > 0 and len(ys) > 0:
            # Find the minimal bounding rectangle for the entire mask
            x_min, x_max = np.min(xs), np.max(xs)
            y_min, y_max = np.min(ys), np.max(ys)
            w1 = x_max - x_min
            h1 = y_max - y_min
            
            bounding_box = (x_min, y_min, w1, h1)
        else:
            bounding_box = None
            
        mask = cv2.resize(mask, (512, 512), interpolation=cv2.INTER_NEAREST)
        mask = np.array(mask > 0.1, dtype=np.uint8)
        masks = torch.Tensor(mask).unsqueeze(0).to(self.model.device)
        
        input_ids = self.ids_input[instruct_type.lower()]
        
        x1, y1, w1, h1 = list(map(int, bounding_box))  # x y w h
        cropped_img = img[y1:y1 + h1, x1:x1 + w1]
        cropped_img = Image.fromarray(cropped_img)
        cropped_img = self.preprocess(cropped_img)
            
        with torch.inference_mode():

            self.model.orig_forward = self.model.forward
            self.model.forward = partial(self.model.orig_forward,
                                        img_metas=[None],
                                        masks=[masks.half()],
                                        cropped_img=cropped_img.unsqueeze(0)
                                        )
            output_ids = self.model.generate(
                input_ids,
                images=image.unsqueeze(0).half().to(self.model.device),
                do_sample=False,
                temperature=1,
                max_new_tokens=2048,
                use_cache=True,
                num_beams=1,
                top_k = 0, # 不进行topk
                top_p = 1, # 累计概率为
                )

            self.model.forward = self.model.orig_forward

        input_token_len = input_ids.shape[1]
        n_diff_input_output = (
            input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(
                f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
        outputs = self.tokenizer.batch_decode(output_ids[:, input_token_len:],
                                            skip_special_tokens=True)[0]
    
        outputs = outputs.strip()
        if outputs.endswith(self.stop_str):
            outputs = outputs[:-len(self.stop_str)]
        outputs = outputs.strip()
        if ':' in outputs:
            outputs = outputs.split(':')[1]

        outputs_list = outputs.split('.')
        outputs_list_final = []
        outputs_str = ''
        for output in outputs_list:
            if output not in outputs_list_final:
                if output=='':
                    continue
                outputs_list_final.append(output)
                outputs_str+=output+'.'
            else:
                break
        return outputs_str