File size: 4,446 Bytes
8fa1f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from typing import Optional, Tuple
import warnings

import torch

import transformers
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
except ImportError:
    from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
from flash_attn.bert_padding import unpad_input, pad_input


def forward(
    self,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.Tensor] = None,
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
    output_attentions: bool = False,
    use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    if output_attentions:
        warnings.warn(
            "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
        )

    bsz, q_len, _ = hidden_states.size()
    # print("begin_#")
    query_states = (
        self.q_proj(hidden_states)
        .view(bsz, q_len, self.num_heads, self.head_dim)
        .transpose(1, 2)
    )
    # print("OK_#")
    key_states = (
        self.k_proj(hidden_states)
        .view(bsz, q_len, self.num_key_value_heads, self.head_dim)
        .transpose(1, 2)
    )
    value_states = (
        self.v_proj(hidden_states)
        .view(bsz, q_len, self.num_key_value_heads, self.head_dim)
        .transpose(1, 2)
    )  # shape: (b, num_heads, s, head_dim)

    kv_seq_len = key_states.shape[-2]
    if past_key_value is not None:
        kv_seq_len += past_key_value[0].shape[-2]

    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
    query_states, key_states = apply_rotary_pos_emb(
        query_states, key_states, cos, sin, position_ids
    )

    if past_key_value is not None:
        # reuse k, v
        key_states = torch.cat([past_key_value[0], key_states], dim=2)
        value_states = torch.cat([past_key_value[1], value_states], dim=2)

    past_key_value = (key_states, value_states) if use_cache else None

    # repeat k/v heads if n_kv_heads < n_heads
    key_states = repeat_kv(key_states, self.num_key_value_groups)
    value_states = repeat_kv(value_states, self.num_key_value_groups)

    # Transform the data into the format required by flash attention
    qkv = torch.stack([query_states, key_states, value_states], dim=2)
    qkv = qkv.transpose(1, 3)  # shape: [b, s, 3, num_heads, head_dim]
    key_padding_mask = attention_mask

    if key_padding_mask is None:
        qkv = qkv.reshape(-1, 3, self.num_heads, self.head_dim)
        cu_q_lens = torch.arange(
            0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device
        )
        max_s = q_len
        output = flash_attn_unpadded_qkvpacked_func(
            qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
        )
        output = output.view(bsz, q_len, -1)
    else:
        qkv = qkv.reshape(bsz, q_len, -1)
        qkv, indices, cu_q_lens, max_s = unpad_input(qkv, key_padding_mask)
        qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
        output_unpad = flash_attn_unpadded_qkvpacked_func(
            qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
        )
        output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim)
        output = pad_input(output_unpad, indices, bsz, q_len)

    return self.o_proj(output), None, past_key_value


# Disable the transformation of the attention mask in LlamaModel as the flash attention
# requires the attention mask to be the same as the key_padding_mask
def _prepare_decoder_attention_mask(
    self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
    # [bsz, seq_len]
    return attention_mask


def replace_llama_attn_with_flash_attn():
    cuda_major, cuda_minor = torch.cuda.get_device_capability()
    if cuda_major < 8:
        warnings.warn(
            "Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward."
            "ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
        )
    transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
        _prepare_decoder_attention_mask
    )
    transformers.models.llama.modeling_llama.LlamaAttention.forward = forward