File size: 15,654 Bytes
8fa1f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from abc import ABC, abstractmethod

import torch

from .multimodal_encoder.builder import build_vision_tower
from .multimodal_projector.builder import build_vision_projector

from seagull.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN


class SeagullMetaModel:

    def __init__(self, config):
        super(SeagullMetaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = build_vision_tower(config, delay_load=False)
            self.mm_projector = build_vision_projector(config)

    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def initialize_vision_modules(self, model_args, fsdp=None):

        vision_tower = model_args.vision_tower
        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter

        if not hasattr(self.config, "mm_vision_tower"):
            self.config.mm_vision_tower = vision_tower

            vision_tower = build_vision_tower(model_args)

            if fsdp is not None and len(fsdp) > 0:
                self.vision_tower = [self.vision_tower]
            else:
                self.vision_tower = vision_tower

            self.config.use_mm_proj = True
            self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
 
            self.mm_projector = build_vision_projector(self.config)

        if pretrain_mm_mlp_adapter is not None:
            print("***********load projector_weights********")
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
            def get_w(weights, keyword):
                return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}

            self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
        


class SeagullMetaForCausalLM(ABC):
    def __init__(self):
        super(SeagullMetaForCausalLM, self).__init__()

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def encode_images(self, images):
        image_features, image_features_dict = self.get_model().get_vision_tower()(images)
        self.get_model().mm_projector.to(device=image_features.device, dtype=image_features.dtype)
        image_features = self.get_model().mm_projector(image_features)
        return image_features, image_features_dict

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, masks, attention_mask, past_key_values, labels, images, preprocessed_img_dict=None, cropped_img=None
    ):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
                attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
            return input_ids, attention_mask, past_key_values, None, labels

        if preprocessed_img_dict is not None:
            image_features, image_features_dict = images, preprocessed_img_dict
        else:
            if type(images) is list or images.ndim == 5:
                concat_images = torch.cat([image for image in images], dim=0)
                image_features, image_features_dict = self.encode_images(concat_images)
                split_sizes = [image.shape[0] for image in images]
                image_features = torch.split(image_features, split_sizes, dim=0)
                image_features = [x.flatten(0, 1).to(concat_images.device) for x in image_features]
            else:
                image_features, image_features_dict = self.encode_images(images)
        

        mask_feats, pos_feats = self.mask_extractor(image_features_dict, masks, cropped_img=cropped_img)

        new_input_embeds = []
        new_labels = [] if labels is not None else None
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
 
            if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
                # multimodal LLM, but the current sample is not multimodal
                # FIXME: this is a hacky fix, for deepspeed zero3 to work
                half_len = cur_input_ids.shape[0] // 2
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
                cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
                new_input_embeds.append(cur_input_embeds)
                if labels is not None:
                    new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue
            image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            cur_new_input_embeds = []
            if labels is not None:
                cur_labels = labels[batch_idx]
                cur_new_labels = []
                assert cur_labels.shape == cur_input_ids.shape
            while image_token_indices.numel() > 0:
                cur_image_features = image_features[cur_image_idx]
                image_token_start = image_token_indices[0]
                if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach())
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start]))
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2]))
                    if labels is not None:
                        cur_new_labels.append(cur_labels[:image_token_start])
                        cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
                        cur_new_labels.append(cur_labels[image_token_start:image_token_start+1])
                        cur_labels = cur_labels[image_token_start+2:]
                else:
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
                    cur_new_input_embeds.append(cur_image_features)
                    if labels is not None:
                        cur_new_labels.append(cur_labels[:image_token_start])
                        cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
                        cur_labels = cur_labels[image_token_start+1:]
                cur_image_idx += 1
                if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
                    cur_input_ids = cur_input_ids[image_token_start+2:]
                else:
                    cur_input_ids = cur_input_ids[image_token_start+1:]
                image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            if cur_input_ids.numel() > 0:
                if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
                    mask_idx = torch.nonzero(cur_input_ids==self.tokenizer.convert_tokens_to_ids(['<global>'])[0])
    
                    _l = 0
                    for i, idx in enumerate(mask_idx):
                        cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[_l:idx[0]]).detach())
                        ## mask
                        cur_new_input_embeds.append(mask_feats[batch_idx][i:i+1].detach())
                        ## pos
                        cur_new_input_embeds.append(pos_feats[batch_idx][i:i+1].detach())
                        if labels is not None:
                            cur_labels[idx[0]:idx[0]+2] = torch.full((2,), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)
                        _l = idx[0]+2
                    if _l< len(cur_input_ids):
                        cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[_l:]).detach())

                else:
                    
                    mask_idx = torch.nonzero(cur_input_ids==self.tokenizer.convert_tokens_to_ids(['<global>'])[0])
                    assert len(mask_idx) == len(mask_feats[batch_idx]), "mask num not equal to mask feats"
                   
                    _l = 0
                    for i, idx in enumerate(mask_idx):
                        cur_raw_new_input_embeds = self.get_model().embed_tokens(cur_input_ids[_l:idx[0]])
                        cur_new_input_embeds.append(cur_raw_new_input_embeds)
                        ## mask
                        cur_new_input_embeds.append(mask_feats[batch_idx][i:i+1].to(cur_raw_new_input_embeds.dtype))
                        ## pos
                        cur_new_input_embeds.append(pos_feats[batch_idx][i:i+1].to(cur_raw_new_input_embeds.dtype))

                        if labels is not None:
                            cur_labels[idx[0]:idx[0]+2] = torch.full((2,), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)

                        _l = idx[0]+2
                    if _l< len(cur_input_ids):
                        cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[_l:]))

                if labels is not None:
                    cur_new_labels.append(cur_labels)
            cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
            cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)

            new_input_embeds.append(cur_new_input_embeds)
            if labels is not None:
                cur_new_labels = torch.cat(cur_new_labels, dim=0)
                new_labels.append(cur_new_labels)

        if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
            max_len = max(x.shape[0] for x in new_input_embeds)

            new_input_embeds_align = []
            for cur_new_embed in new_input_embeds:
                cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
                new_input_embeds_align.append(cur_new_embed)
            new_input_embeds = torch.stack(new_input_embeds_align, dim=0)

            if labels is not None:
                new_labels_align = []
                _new_labels = new_labels
                for cur_new_label in new_labels:
                    cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
                    new_labels_align.append(cur_new_label)
                new_labels = torch.stack(new_labels_align, dim=0)

            if attention_mask is not None:
                new_attention_mask = []
                for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
                    new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
                    new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
                    cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
                    new_attention_mask.append(cur_new_attention_mask)
                attention_mask = torch.stack(new_attention_mask, dim=0)
                assert attention_mask.shape == new_labels.shape
        else:
            new_input_embeds = torch.stack(new_input_embeds, dim=0)
            if labels is not None:
                new_labels  = torch.stack(new_labels, dim=0)

            if attention_mask is not None:
                new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
                attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
                assert attention_mask.shape == new_input_embeds.shape[:2]

        return None, attention_mask, past_key_values, new_input_embeds, new_labels

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        if model_args.mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

        mask_tokens = ['<global>', '<pos>']
        num_new_tokens = tokenizer.add_tokens(mask_tokens, special_tokens=True)

        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if model_args.pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
                embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
        elif model_args.mm_use_im_patch_token:
            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False
        
        for m in self.modules():
            m.tokenizer = tokenizer