File size: 9,539 Bytes
8fa1f84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Type, Any
from torch import Tensor
import math
import numpy as np
from einops import rearrange
class MLP(nn.Module):
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int,
num_layers: int) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class MaskExtractor(nn.Module): # Mask-based Feature Extractor
def __init__(self, mask_shape=112, embed_dim=1024, out_dim=4096, num_heads=8, mlp_dim=2048, downsample_rate=2, skip_first_layer_pe=False):
super(MaskExtractor, self).__init__()
self.mask_shape = mask_shape
self.mask_pooling = MaskPooling()
self.feat_linear = nn.Linear(embed_dim, out_dim)
self.cross_feat_linear = nn.Linear(embed_dim, out_dim)
self.mask_linear = MLP(mask_shape*mask_shape, embed_dim, out_dim, 3)
self.feature_name = ['res2', 'res3', 'res4', 'res5']
self.cross_att_res = CrossAttention(
embedding_dim=embed_dim,
num_heads=num_heads,
mlp_dim=mlp_dim,
douwnsample_rate=downsample_rate,
skip_first_layer_pe=skip_first_layer_pe
)
self.res2 = nn.Linear(192, 1024)
self.res3 = nn.Linear(384, 1024)
self.res4 = nn.Linear(768, 1024)
self.res5 = nn.Linear(1536, 1024)
self.g_res2 = nn.Linear(16384, 1024) # h * w
self.g_res3 = nn.Linear(4096, 1024)
self.g_res4 = nn.Linear(1024, 1024)
self.g_res5 = nn.Linear(256, 1024)
self.final_mlp = nn.Linear(2 * out_dim, out_dim)
self.global_vit = nn.Sequential(
nn.Conv2d(3, 5, 1),
nn.GELU(),
nn.AvgPool2d(4, 4),
nn.Conv2d(5, 1, 1),
nn.GELU(),
nn.AvgPool2d(4, 4),
)
self.is_first = 0
self.sa = Attention(32 * 32, num_heads) # self-attention
self.mlp = MLP(32 * 32, 512, out_dim, 3)
def cal_globa_local(self, mask_feat_raw, feat_new, res, g_res, cross_attention):
mask_feat_flatten = mask_feat_raw.to(device=res.weight.device, dtype=res.weight.dtype)
mask_feat = res(mask_feat_flatten) # (b, q, 1024)
feat_new = feat_new.to(device=g_res.weight.device, dtype=g_res.weight.dtype)
all_feat_new = g_res(feat_new) # (b, c, 1024)
global_mask = cross_attention(mask_feat, all_feat_new)
return mask_feat, global_mask
def forward(self, feats, masks, cropped_img):
global_features = []
local_features = []
num_imgs = len(masks)
for idx in range(num_imgs):
mask = masks[idx].unsqueeze(0).float() #(1, q, h, w)
cropped_ = cropped_img[idx] # (q, 3, h, w)
num_feats = len(self.feature_name)
mask_feats = mask.new_zeros(num_feats, mask.shape[1], 1024)
global_masks = mask.new_zeros(num_feats, mask.shape[1], 1024)
for i, name in enumerate(self.feature_name):
feat = feats[name][idx].unsqueeze(0)
feat = feat.to(mask.dtype)
mask_feat_raw = self.mask_pooling(feat, mask)
feat_new = rearrange(feat, 'b c h w -> b c (h w)')
mask_feat, global_mask = self.cal_globa_local(mask_feat_raw, feat_new, res=getattr(self, name), g_res=getattr(self, 'g_{}'.format(name)), cross_attention=getattr(self,"cross_att_res"))
mask_feats[i] = mask_feat.squeeze(0) # (q, 1024)
global_masks[i] = global_mask.squeeze(0)
mask_feats = mask_feats.sum(0) # (1, q, 1024)
global_masks = global_masks.sum(0) # (1, q, 1024)
global_masks = global_masks.to(device=self.cross_feat_linear.weight.device, dtype=self.cross_feat_linear.weight.dtype)
global_masks_linear = self.cross_feat_linear(global_masks)
mask_feats = mask_feats.to(device=self.feat_linear.weight.device, dtype=self.feat_linear.weight.dtype)
mask_feats_linear = self.feat_linear(mask_feats) #(1, q, 4096)
query_feat = self.final_mlp(torch.cat((global_masks_linear, mask_feats_linear), dim=-1))
global_features.append(query_feat) # global
cropped_ = cropped_.to(device=self.feat_linear.weight.device, dtype=self.feat_linear.weight.dtype)
global_features = self.global_vit(cropped_).to(device=self.feat_linear.weight.device, dtype=self.feat_linear.weight.dtype) # q, 1, 32, 32
global_features = global_features.reshape(-1, 1, 32 * 32) # q, 1, 32 * 32
pos_feat = self.mlp(self.sa(global_features, global_features, global_features).squeeze(1)) # q, output
local_features.append(pos_feat) #(imgs_num, 1, q, 4096) # local
return global_features, local_features
class MaskPooling(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, mask):
if not x.shape[-2:] == mask.shape[-2:]:
# reshape mask to x
mask = F.interpolate(mask, size=x.shape[-2:], mode='bilinear', align_corners=False)
mask = (mask > 0).to(mask.dtype)
denorm = mask.sum(dim=(-1, -2), keepdim=True) + 1e-8
mask_pooled_x = torch.einsum(
"bchw,bqhw->bqc",
x,
mask / denorm,
)
return mask_pooled_x
class CrossAttention(nn.Module):
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
douwnsample_rate: int = 2,
activation: Type[nn.Module] = nn.ReLU,
skip_first_layer_pe: bool = False
) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.num_heads =num_heads
self.self_attn = Attention(embedding_dim, num_heads) # self-attention
self.skip_first_layer_pe = skip_first_layer_pe
self.norm1 = nn.LayerNorm(embedding_dim)
# cross-attention
self.cross_attn = Attention(embedding_dim, num_heads, downsample_rate=douwnsample_rate)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) # MLP
def forward(self, queries, keys):
attn_out = self.self_attn(queries, queries, queries)
queries = queries + attn_out
queries = self.norm1(queries)
attn_out = self.cross_attn(q=queries, k=keys, v=keys)
queries = attn_out + queries
queries = self.norm2(queries)
# MLP
mlp_out = self.mlp(queries)
queries = queries + mlp_out
return queries
class MLPBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
mlp_dim: int,
act: Type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.act(self.lin1(x)))
class Attention(nn.Module):
"""
An attention layer that allows for downscaling the size of the embedding
after projection to queries, keys, and values.
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
downsample_rate: int = 1,
) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
def _recombine_heads(self, x: Tensor) -> Tensor:
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
# Input projections
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
# Separate into heads
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
# Attention
_, _, _, c_per_head = q.shape
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
attn = attn / math.sqrt(c_per_head)
attn = torch.softmax(attn, dim=-1)
# Get output
out = attn @ v
out = self._recombine_heads(out)
out = self.out_proj(out)
return out
|