File size: 9,539 Bytes
8fa1f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Type, Any
from torch import Tensor
import math
import numpy as np
from einops import rearrange

class MLP(nn.Module):

    def __init__(self, input_dim: int, hidden_dim: int, output_dim: int,
                 num_layers: int) -> None:
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x

class MaskExtractor(nn.Module): # Mask-based Feature Extractor
    def __init__(self, mask_shape=112, embed_dim=1024, out_dim=4096, num_heads=8, mlp_dim=2048, downsample_rate=2, skip_first_layer_pe=False):
        super(MaskExtractor, self).__init__()
        self.mask_shape = mask_shape
        self.mask_pooling = MaskPooling()
        self.feat_linear = nn.Linear(embed_dim, out_dim)
        self.cross_feat_linear = nn.Linear(embed_dim, out_dim)
        self.mask_linear = MLP(mask_shape*mask_shape, embed_dim, out_dim, 3)

        self.feature_name = ['res2', 'res3', 'res4', 'res5']

        self.cross_att_res = CrossAttention(
            embedding_dim=embed_dim,
            num_heads=num_heads,
            mlp_dim=mlp_dim,
            douwnsample_rate=downsample_rate,
            skip_first_layer_pe=skip_first_layer_pe
        )
        
        self.res2 = nn.Linear(192, 1024)
        self.res3 = nn.Linear(384, 1024)
        self.res4 = nn.Linear(768, 1024)
        self.res5 = nn.Linear(1536, 1024)

        self.g_res2 = nn.Linear(16384, 1024) # h * w
        self.g_res3 = nn.Linear(4096, 1024)
        self.g_res4 = nn.Linear(1024, 1024)
        self.g_res5 = nn.Linear(256, 1024)

        self.final_mlp = nn.Linear(2 * out_dim, out_dim)
        
        self.global_vit = nn.Sequential(
            nn.Conv2d(3, 5, 1),
            nn.GELU(),
            nn.AvgPool2d(4, 4),

            nn.Conv2d(5, 1, 1),
            nn.GELU(),
            nn.AvgPool2d(4, 4),
        )
        self.is_first = 0
        
        self.sa = Attention(32 * 32, num_heads) # self-attention
        self.mlp =  MLP(32 * 32, 512, out_dim, 3)

    def cal_globa_local(self, mask_feat_raw, feat_new, res, g_res, cross_attention):
        mask_feat_flatten = mask_feat_raw.to(device=res.weight.device, dtype=res.weight.dtype) 
        mask_feat = res(mask_feat_flatten) # (b, q, 1024)
        
        feat_new = feat_new.to(device=g_res.weight.device, dtype=g_res.weight.dtype) 
        all_feat_new = g_res(feat_new) # (b, c, 1024)
        global_mask = cross_attention(mask_feat, all_feat_new)
        return mask_feat, global_mask
                    
    def forward(self, feats, masks, cropped_img):
        global_features = []
        local_features = []
        num_imgs = len(masks)

        for idx in range(num_imgs):
            mask = masks[idx].unsqueeze(0).float() #(1, q, h, w)
            cropped_ = cropped_img[idx] # (q, 3, h, w)

            num_feats = len(self.feature_name)
            mask_feats = mask.new_zeros(num_feats, mask.shape[1], 1024)
            global_masks = mask.new_zeros(num_feats, mask.shape[1], 1024)

            for i, name in enumerate(self.feature_name):
                feat = feats[name][idx].unsqueeze(0) 
                feat = feat.to(mask.dtype)
                
                mask_feat_raw = self.mask_pooling(feat, mask)
                feat_new = rearrange(feat, 'b c h w -> b c (h w)')
                
                mask_feat, global_mask = self.cal_globa_local(mask_feat_raw, feat_new, res=getattr(self, name),  g_res=getattr(self, 'g_{}'.format(name)),  cross_attention=getattr(self,"cross_att_res"))

                mask_feats[i] = mask_feat.squeeze(0) # (q, 1024)
                global_masks[i] = global_mask.squeeze(0)
            mask_feats = mask_feats.sum(0) # (1, q, 1024)
            global_masks = global_masks.sum(0)  # (1, q, 1024)
            global_masks = global_masks.to(device=self.cross_feat_linear.weight.device, dtype=self.cross_feat_linear.weight.dtype)
            global_masks_linear = self.cross_feat_linear(global_masks)
            mask_feats = mask_feats.to(device=self.feat_linear.weight.device, dtype=self.feat_linear.weight.dtype) 
            mask_feats_linear = self.feat_linear(mask_feats) #(1, q, 4096)

            query_feat = self.final_mlp(torch.cat((global_masks_linear, mask_feats_linear), dim=-1))
            global_features.append(query_feat) # global

            cropped_ = cropped_.to(device=self.feat_linear.weight.device, dtype=self.feat_linear.weight.dtype) 
            global_features = self.global_vit(cropped_).to(device=self.feat_linear.weight.device, dtype=self.feat_linear.weight.dtype)  # q, 1, 32, 32
            global_features = global_features.reshape(-1, 1, 32 * 32) # q, 1, 32 * 32
            pos_feat = self.mlp(self.sa(global_features, global_features, global_features).squeeze(1))  # q, output

            local_features.append(pos_feat) #(imgs_num, 1, q, 4096) # local
        
        return global_features, local_features
    
class MaskPooling(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x, mask):

        if not x.shape[-2:] == mask.shape[-2:]:
            # reshape mask to x
            mask = F.interpolate(mask, size=x.shape[-2:], mode='bilinear', align_corners=False)

        mask = (mask > 0).to(mask.dtype)
        denorm = mask.sum(dim=(-1, -2), keepdim=True) + 1e-8

        mask_pooled_x = torch.einsum(
            "bchw,bqhw->bqc",
            x,
            mask / denorm,
        )
        return mask_pooled_x
    

class CrossAttention(nn.Module):
    def __init__(
            self, 
            embedding_dim: int,
            num_heads: int,
            mlp_dim: int = 2048,
            douwnsample_rate: int = 2, 
            activation: Type[nn.Module] = nn.ReLU,
            skip_first_layer_pe: bool = False
        ) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim
        self.num_heads =num_heads
        self.self_attn = Attention(embedding_dim, num_heads) # self-attention
        self.skip_first_layer_pe = skip_first_layer_pe
        self.norm1 = nn.LayerNorm(embedding_dim)

        # cross-attention
        self.cross_attn = Attention(embedding_dim, num_heads, downsample_rate=douwnsample_rate)
        self.norm2 = nn.LayerNorm(embedding_dim)

        self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) # MLP

    def forward(self, queries, keys):
        attn_out = self.self_attn(queries, queries, queries)
        queries = queries + attn_out
        queries = self.norm1(queries)

        attn_out = self.cross_attn(q=queries, k=keys, v=keys)
        queries = attn_out + queries
        queries = self.norm2(queries)

        # MLP
        mlp_out = self.mlp(queries)
        queries = queries + mlp_out
        return queries

class MLPBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        mlp_dim: int,
        act: Type[nn.Module] = nn.GELU,
    ) -> None:
        super().__init__()
        self.lin1 = nn.Linear(embedding_dim, mlp_dim)
        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
        self.act = act()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lin2(self.act(self.lin1(x)))

class Attention(nn.Module):
    """
    An attention layer that allows for downscaling the size of the embedding
    after projection to queries, keys, and values.
    """

    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        downsample_rate: int = 1,
    ) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim
        self.internal_dim = embedding_dim // downsample_rate
        self.num_heads = num_heads
        assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."

        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)

    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
        b, n, c = x.shape
        x = x.reshape(b, n, num_heads, c // num_heads)
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    def _recombine_heads(self, x: Tensor) -> Tensor:
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        # Input projections
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # Attention
        _, _, _, c_per_head = q.shape
        attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokens
        attn = attn / math.sqrt(c_per_head)
        attn = torch.softmax(attn, dim=-1)

        # Get output
        out = attn @ v
        out = self._recombine_heads(out)
        out = self.out_proj(out)

        return out