Spaces:
Running
on
Zero
Running
on
Zero
Zenithwang
commited on
Commit
•
34d79f8
1
Parent(s):
0298010
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
5 |
from threading import Thread
|
|
|
6 |
|
7 |
model_path = 'infly/OpenCoder-8B-Instruct'
|
8 |
|
@@ -43,42 +44,46 @@ system_prompt = f"<|im_start|>{system_role}\n{system_prompt}<|im_end|>"
|
|
43 |
def predict(message, history):
|
44 |
# history = []
|
45 |
# history_transformer_format = history + [[message, ""]]
|
46 |
-
|
47 |
-
|
48 |
-
# Formatting the input for the model.
|
49 |
-
# messages = system_prompt + sft_end_token.join([sft_end_token.join([f"\n{sft_start_token}{user_role}\n" + item[0], f"\n{sft_start_token}{assistant_role}\n" + item[1]])
|
50 |
-
# for item in history_transformer_format])
|
51 |
-
|
52 |
-
model_messages = []
|
53 |
-
print(f'history: {history}')
|
54 |
-
for i, item in enumerate(history):
|
55 |
-
model_messages.append({"role": user_role, "content": item[0]})
|
56 |
-
model_messages.append({"role": assistant_role, "content": item[1]})
|
57 |
-
|
58 |
-
model_messages.append({"role": user_role, "content": message})
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
model_inputs,
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
css = """
|
|
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
5 |
from threading import Thread
|
6 |
+
import traceback
|
7 |
|
8 |
model_path = 'infly/OpenCoder-8B-Instruct'
|
9 |
|
|
|
44 |
def predict(message, history):
|
45 |
# history = []
|
46 |
# history_transformer_format = history + [[message, ""]]
|
47 |
+
try:
|
48 |
+
stop = StopOnTokens()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Formatting the input for the model.
|
51 |
+
# messages = system_prompt + sft_end_token.join([sft_end_token.join([f"\n{sft_start_token}{user_role}\n" + item[0], f"\n{sft_start_token}{assistant_role}\n" + item[1]])
|
52 |
+
# for item in history_transformer_format])
|
53 |
+
|
54 |
+
model_messages = []
|
55 |
+
print(f'history: {history}')
|
56 |
+
for i, item in enumerate(history):
|
57 |
+
model_messages.append({"role": user_role, "content": item[0]})
|
58 |
+
model_messages.append({"role": assistant_role, "content": item[1]})
|
59 |
+
|
60 |
+
model_messages.append({"role": user_role, "content": message})
|
61 |
+
|
62 |
+
print(f'model_messages: {model_messages}')
|
63 |
|
64 |
+
print(f'model_final_inputs: {tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, tokenize=False)}', flush=True)
|
65 |
+
model_inputs = tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, return_tensors="pt").to(device)
|
66 |
+
# model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
67 |
+
|
68 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
69 |
+
generate_kwargs = dict(
|
70 |
+
model_inputs,
|
71 |
+
streamer=streamer,
|
72 |
+
max_new_tokens=1024,
|
73 |
+
do_sample=False,
|
74 |
+
# stopping_criteria=StoppingCriteriaList([stop])
|
75 |
+
)
|
76 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
77 |
+
t.start() # Starting the generation in a separate thread.
|
78 |
+
partial_message = ""
|
79 |
+
for new_token in streamer:
|
80 |
+
partial_message += new_token
|
81 |
+
if sft_end_token in partial_message: # Breaking the loop if the stop token is generated.
|
82 |
+
break
|
83 |
+
yield partial_message
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
print(traceback.format_exc())
|
87 |
|
88 |
|
89 |
css = """
|