Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from threading import Thread | |
import traceback | |
model_path = 'infly/OpenCoder-8B-Instruct' | |
# Loading the tokenizer and model from Hugging Face's model hub. | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16) | |
# using CUDA for an optimal experience | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = model.to(device) | |
# Defining a custom stopping criteria class for the model's text generation. | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [96539] # IDs of tokens where the generation should stop. | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token. | |
return True | |
return False | |
system_role= 'system' | |
user_role = 'user' | |
assistant_role = "assistant" | |
sft_start_token = "<|im_start|>" | |
sft_end_token = "<|im_end|>" | |
ct_end_token = "<|endoftext|>" | |
# system_prompt= 'You are a CodeLLM developed by INF.' | |
# Function to generate model predictions. | |
def predict(message, history): | |
try: | |
stop = StopOnTokens() | |
model_messages = [] | |
# print(f'history: {history}') | |
for i, item in enumerate(history): | |
model_messages.append({"role": user_role, "content": item[0]}) | |
model_messages.append({"role": assistant_role, "content": item[1]}) | |
model_messages.append({"role": user_role, "content": message}) | |
print(f'model_messages: {model_messages}') | |
# print(f'model_final_inputs: {tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, tokenize=False)}', flush=True) | |
model_inputs = tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, return_tensors="pt").to(device) | |
# model_inputs = tokenizer([messages], return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=False, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() # Starting the generation in a separate thread. | |
partial_message = "" | |
for new_token in streamer: | |
partial_message += new_token | |
if sft_end_token in partial_message: # Breaking the loop if the stop token is generated. | |
break | |
yield partial_message | |
except Exception as e: | |
print(traceback.format_exc()) | |
css = """ | |
full-height { | |
height: 100%; | |
} | |
""" | |
prompt_examples = [ | |
'Write a quick sort algorithm in python.', | |
'Write a greedy snake game using pygame.', | |
'How to use numpy?' | |
] | |
placeholder = """ | |
<div style="opacity: 0.5;"> | |
<img src="https://raw.githubusercontent.com/OpenCoder-llm/opencoder-llm.github.io/refs/heads/main/static/images/opencoder_icon.jpg" style="width:30%;"> | |
</div> | |
""" | |
chatbot = gr.Chatbot(label='OpenCoder', placeholder=placeholder) | |
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo: | |
gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css) | |
demo.launch() # Launching the web interface. |