Spaces:
Sleeping
Sleeping
import os | |
import ee | |
import geemap | |
import json | |
import geopandas as gpd | |
import streamlit as st | |
import pandas as pd | |
from fastkml import kml | |
import geojson | |
ee_credentials = os.environ.get("EE") | |
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True) | |
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f: | |
f.write(ee_credentials) | |
ee.Initialize() | |
def convert_3d_to_2d(geometry): | |
""" | |
Recursively convert any 3D coordinates in a geometry to 2D. | |
""" | |
if geometry.is_empty: | |
return geometry | |
if geometry.geom_type == 'Polygon': | |
return geojson.Polygon([[(x, y) for x, y, *_ in ring] for ring in geometry.coordinates]) | |
elif geometry.geom_type == 'MultiPolygon': | |
return geojson.MultiPolygon([ | |
[[(x, y) for x, y, *_ in ring] for ring in poly] | |
for poly in geometry.coordinates | |
]) | |
elif geometry.geom_type == 'LineString': | |
return geojson.LineString([(x, y) for x, y, *_ in geometry.coordinates]) | |
elif geometry.geom_type == 'MultiLineString': | |
return geojson.MultiLineString([ | |
[(x, y) for x, y, *_ in line] | |
for line in geometry.coordinates | |
]) | |
elif geometry.geom_type == 'Point': | |
x, y, *_ = geometry.coordinates | |
return geojson.Point((x, y)) | |
elif geometry.geom_type == 'MultiPoint': | |
return geojson.MultiPoint([(x, y) for x, y, *_ in geometry.coordinates]) | |
return geometry # Return unchanged if not a supported geometry type | |
def kml_to_geojson(kml_string): | |
k = kml.KML() | |
k.from_string(kml_string.encode('utf-8')) # Convert the string to bytes | |
features = list(k.features()) | |
geojson_features = [] | |
for feature in features: | |
geometry_2d = convert_3d_to_2d(feature.geometry) | |
geojson_features.append(geojson.Feature(geometry=geometry_2d)) | |
geojson_data = geojson.FeatureCollection(geojson_features) | |
return geojson_data | |
def geojson_to_ee(geojson_data): | |
ee_object = geemap.geojson_to_ee(geojson_data) | |
return ee_object | |
# put title in center | |
st.markdown(""" | |
<style> | |
h1 { | |
text-align: center; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
st.title("Mean NDVI Calculator") | |
# get the start and end date from the user | |
col = st.columns(2) | |
start_date = col[0].date_input("Start Date", value=pd.to_datetime('2021-01-01')) | |
end_date = col[1].date_input("End Date", value=pd.to_datetime('2021-01-30')) | |
start_date = start_date.strftime("%Y-%m-%d") | |
end_date = end_date.strftime("%Y-%m-%d") | |
max_cloud_cover = st.number_input("Max Cloud Cover", value=20) | |
# Get the geojson file from the user | |
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"]) | |
# Read the KML file | |
if uploaded_file is None: | |
file_name = "Bhankhara_Df_11_he_5_2020-21.geojson" | |
st.write(f"Using default file: {file_name}") | |
data = gpd.read_file(file_name) | |
with open(file_name) as f: | |
str_data = f.read() | |
else: | |
st.write(f"Using uploaded file: {uploaded_file.name}") | |
file_name = uploaded_file.name | |
bytes_data = uploaded_file.getvalue() | |
str_data = bytes_data.decode("utf-8") | |
if file_name.endswith(".geojson"): | |
geojson_data = json.loads(str_data) | |
elif file_name.endswith(".kml"): | |
geojson_data = kml_to_geojson(str_data) | |
print(geojson_data) | |
# Read Geojson File | |
ee_object = geojson_to_ee(geojson_data) | |
# Filter data based on the date, bounds, cloud coverage and select NIR and Red Band | |
collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterBounds(ee_object).filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', max_cloud_cover)).filter(ee.Filter.date(start_date, end_date)).select(['B4', 'B8']) | |
# Print Number of Images in collection | |
# print("Number of images", collection.size().getInfo()) | |
st.write(f"Number of images: {collection.size().getInfo()}") | |
# Calculate NDVI as Normalized Index | |
def calculate_ndvi(image): | |
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI') | |
return image.addBands(ndvi) | |
collection = collection.map(calculate_ndvi) | |
# Write Zonalstats into csv file | |
# out_dir = os.path.join("Output") | |
# out_NDVI_stats = os.path.join(out_dir, "tmp.csv") | |
# if not os.path.exists(out_dir): | |
# os.makedirs(out_dir) | |
geemap.zonal_stats(collection.select(["NDVI"]), ee_object, "tmp.csv", stat_type="mean", scale=10) | |
# Show the table | |
df = pd.read_csv("tmp.csv") | |
df = df.T | |
df = df.reset_index() | |
df = df.iloc[:-2] | |
df['index'] = pd.to_datetime(df['index'].apply(lambda x: x.split('_')[1].split('T')[0])).dt.strftime('%Y-%m-%d') | |
df.rename(columns={'index': 'Date', 0: 'Mean NDVI'}, inplace=True) | |
st.write(df) | |
# plot the time series | |
st.write("Time Series Plot") | |
st.line_chart(df.set_index('Date')) | |
st.write(f"Overall Mean NDVI: {df['Mean NDVI'].mean():.2f}") |