File size: 4,764 Bytes
c976d1f
 
 
 
 
 
 
 
 
 
4616c18
 
 
 
 
c976d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import ee
import geemap
import json
import geopandas as gpd
import streamlit as st
import pandas as pd
from fastkml import kml
import geojson

ee_credentials = os.environ.get("EE")
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
    f.write(ee_credentials)

ee.Initialize()

def convert_3d_to_2d(geometry):
    """
    Recursively convert any 3D coordinates in a geometry to 2D.
    """
    if geometry.is_empty:
        return geometry

    if geometry.geom_type == 'Polygon':
        return geojson.Polygon([[(x, y) for x, y, *_ in ring] for ring in geometry.coordinates])

    elif geometry.geom_type == 'MultiPolygon':
        return geojson.MultiPolygon([
            [[(x, y) for x, y, *_ in ring] for ring in poly]
            for poly in geometry.coordinates
        ])

    elif geometry.geom_type == 'LineString':
        return geojson.LineString([(x, y) for x, y, *_ in geometry.coordinates])

    elif geometry.geom_type == 'MultiLineString':
        return geojson.MultiLineString([
            [(x, y) for x, y, *_ in line]
            for line in geometry.coordinates
        ])

    elif geometry.geom_type == 'Point':
        x, y, *_ = geometry.coordinates
        return geojson.Point((x, y))

    elif geometry.geom_type == 'MultiPoint':
        return geojson.MultiPoint([(x, y) for x, y, *_ in geometry.coordinates])

    return geometry  # Return unchanged if not a supported geometry type

def kml_to_geojson(kml_string):
    k = kml.KML()
    k.from_string(kml_string.encode('utf-8'))  # Convert the string to bytes
    features = list(k.features())
    
    geojson_features = []
    for feature in features:
        geometry_2d = convert_3d_to_2d(feature.geometry)
        geojson_features.append(geojson.Feature(geometry=geometry_2d))
    
    geojson_data = geojson.FeatureCollection(geojson_features)
    return geojson_data

def geojson_to_ee(geojson_data):
  ee_object = geemap.geojson_to_ee(geojson_data)
  return ee_object

# put title in center
st.markdown("""
<style>
h1 {
    text-align: center;
}
</style>
""", unsafe_allow_html=True)

st.title("Mean NDVI Calculator")

# get the start and end date from the user
col = st.columns(2)
start_date = col[0].date_input("Start Date", value=pd.to_datetime('2021-01-01'))
end_date = col[1].date_input("End Date", value=pd.to_datetime('2021-01-30'))
start_date = start_date.strftime("%Y-%m-%d")
end_date = end_date.strftime("%Y-%m-%d")

max_cloud_cover = st.number_input("Max Cloud Cover", value=20)

# Get the geojson file from the user
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])

# Read the KML file
if uploaded_file is None:
    file_name = "Bhankhara_Df_11_he_5_2020-21.geojson"
    st.write(f"Using default file: {file_name}")
    data = gpd.read_file(file_name)
    with open(file_name) as f:
      str_data = f.read()
else:
    st.write(f"Using uploaded file: {uploaded_file.name}")
    file_name = uploaded_file.name
    bytes_data = uploaded_file.getvalue()
    str_data = bytes_data.decode("utf-8")


if file_name.endswith(".geojson"):
  geojson_data = json.loads(str_data)
elif file_name.endswith(".kml"):
  geojson_data = kml_to_geojson(str_data)
  print(geojson_data)

# Read Geojson File
ee_object = geojson_to_ee(geojson_data)

# Filter data based on the date, bounds, cloud coverage and select NIR and Red Band
collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterBounds(ee_object).filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', max_cloud_cover)).filter(ee.Filter.date(start_date, end_date)).select(['B4', 'B8'])

# Print Number of Images in collection
# print("Number of images", collection.size().getInfo())
st.write(f"Number of images: {collection.size().getInfo()}")

# Calculate NDVI as Normalized Index
def calculate_ndvi(image):
  ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
  return image.addBands(ndvi)

collection = collection.map(calculate_ndvi)

# Write Zonalstats into csv file
# out_dir = os.path.join("Output")
# out_NDVI_stats = os.path.join(out_dir, "tmp.csv")

# if not os.path.exists(out_dir):
#     os.makedirs(out_dir)

geemap.zonal_stats(collection.select(["NDVI"]), ee_object, "tmp.csv", stat_type="mean", scale=10)

# Show the table
df = pd.read_csv("tmp.csv")
df = df.T
df = df.reset_index()
df = df.iloc[:-2]
df['index'] = pd.to_datetime(df['index'].apply(lambda x: x.split('_')[1].split('T')[0])).dt.strftime('%Y-%m-%d')
df.rename(columns={'index': 'Date', 0: 'Mean NDVI'}, inplace=True)
st.write(df)

# plot the time series
st.write("Time Series Plot")
st.line_chart(df.set_index('Date'))

st.write(f"Overall Mean NDVI: {df['Mean NDVI'].mean():.2f}")