File size: 6,448 Bytes
3bf4279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c976d1f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import ee
import geemap
import json
import geopandas as gpd
import streamlit as st
import pandas as pd
from fastkml import kml
import geojson

ee_credentials = os.environ.get("EE")
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
    f.write(ee_credentials)

ee.Initialize()

def convert_3d_to_2d(geometry):
    """

    Recursively convert any 3D coordinates in a geometry to 2D.

    """
    if geometry.is_empty:
        return geometry

    if geometry.geom_type == 'Polygon':
        return geojson.Polygon([[(x, y) for x, y, *_ in ring] for ring in geometry.coordinates])

    elif geometry.geom_type == 'MultiPolygon':
        return geojson.MultiPolygon([
            [[(x, y) for x, y, *_ in ring] for ring in poly]
            for poly in geometry.coordinates
        ])

    elif geometry.geom_type == 'LineString':
        return geojson.LineString([(x, y) for x, y, *_ in geometry.coordinates])

    elif geometry.geom_type == 'MultiLineString':
        return geojson.MultiLineString([
            [(x, y) for x, y, *_ in line]
            for line in geometry.coordinates
        ])

    elif geometry.geom_type == 'Point':
        x, y, *_ = geometry.coordinates
        return geojson.Point((x, y))

    elif geometry.geom_type == 'MultiPoint':
        return geojson.MultiPoint([(x, y) for x, y, *_ in geometry.coordinates])

    return geometry  # Return unchanged if not a supported geometry type

def convert_to_2d_geometry(geom): #Handles Polygon Only
  if geom is None:
    return None
  elif geom.has_z:
    # Extract exterior coordinates and convert to 2D
    exterior_coords = geom.exterior.coords[:]  # Get all coordinates of the exterior ring
    exterior_coords_2d = [(x, y) for x, y, *_ in exterior_coords] # Keep only the x and y coordinates, ignoring z

    # Handle interior rings (holes) if any
    interior_coords_2d = []
    for interior in geom.interiors:
        interior_coords = interior.coords[:]
        interior_coords_2d.append([(x, y) for x, y, *_ in interior_coords])

    # Create a new Polygon with 2D coordinates
    return type(geom)(exterior_coords_2d, interior_coords_2d)
  else:
    return geom
  
def kml_to_gdf(kml_file):
  try:
    gdf = gpd.read_file(kml_file)
    for i in range(len(gdf)):
      geom = gdf.iloc[i].geometry
      new_geom = convert_to_2d_geometry(geom)
      gdf.loc[i, 'geometry'] = new_geom
      print(gdf.iloc[i].geometry)
    print(f"KML file '{kml_file}' successfully read")
  except Exception as e:
    print(f"Error: {e}")
  return gdf

def kml_to_geojson(kml_string):
    k = kml.KML()
    k.from_string(kml_string.encode('utf-8'))  # Convert the string to bytes
    features = list(k.features())
    
    geojson_features = []
    for feature in features:
        geometry_2d = convert_3d_to_2d(feature.geometry)
        geojson_features.append(geojson.Feature(geometry=geometry_2d))
    
    geojson_data = geojson.FeatureCollection(geojson_features)
    return geojson_data

def geojson_to_ee(geojson_data):
  ee_object = ee.FeatureCollection(geojson_data)
  return ee_object

def kml_to_gdf(kml_file):
  try:
    gdf = gpd.read_file(kml_file)
    for i in range(len(gdf)):
      geom = gdf.iloc[i].geometry
      new_geom = convert_to_2d_geometry(geom)
      gdf.loc[i, 'geometry'] = new_geom
      print(gdf.iloc[i].geometry)
    print(f"KML file '{kml_file}' successfully read")
  except Exception as e:
    print(f"Error: {e}")
  return gdf

# put title in center
st.markdown("""

<style>

h1 {

    text-align: center;

}

</style>

""", unsafe_allow_html=True)

st.title("Mean NDVI Calculator")

# get the start and end date from the user
col = st.columns(2)
start_date = col[0].date_input("Start Date", value=pd.to_datetime('2021-01-01'))
end_date = col[1].date_input("End Date", value=pd.to_datetime('2021-01-30'))
start_date = start_date.strftime("%Y-%m-%d")
end_date = end_date.strftime("%Y-%m-%d")

max_cloud_cover = st.number_input("Max Cloud Cover", value=20)

# Get the geojson file from the user
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])

# Read the KML file
if uploaded_file is None:
    file_name = "Bhankhara_Df_11_he_5_2020-21.geojson"
    st.write(f"Using default file: {file_name}")
    data = gpd.read_file(file_name)
    with open(file_name) as f:
      str_data = f.read()
else:
    st.write(f"Using uploaded file: {uploaded_file.name}")
    file_name = uploaded_file.name
    bytes_data = uploaded_file.getvalue()
    str_data = bytes_data.decode("utf-8")


if file_name.endswith(".geojson"):
  geojson_data = json.loads(str_data)
elif file_name.endswith(".kml"):
  geojson_data = json.loads(kml_to_gdf(str_data).to_json())
  print(geojson_data)

# Read Geojson File
ee_object = geojson_to_ee(geojson_data)

# Filter data based on the date, bounds, cloud coverage and select NIR and Red Band
collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterBounds(ee_object).filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', max_cloud_cover)).filter(ee.Filter.date(start_date, end_date)).select(['B4', 'B8'])

# Print Number of Images in collection
# print("Number of images", collection.size().getInfo())
st.write(f"Number of images: {collection.size().getInfo()}")

# Calculate NDVI as Normalized Index
def calculate_ndvi(image):
  ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
  return image.addBands(ndvi)

collection = collection.map(calculate_ndvi)

# Write Zonalstats into csv file
# out_dir = os.path.join("Output")
# out_NDVI_stats = os.path.join(out_dir, "tmp.csv")

# if not os.path.exists(out_dir):
#     os.makedirs(out_dir)

geemap.zonal_stats(collection.select(["NDVI"]), ee_object, "tmp.csv", stat_type="mean", scale=10)

# Show the table
df = pd.read_csv("tmp.csv")
df = df.T
df = df.reset_index()
df = df.iloc[:-2]
df['index'] = pd.to_datetime(df['index'].apply(lambda x: x.split('_')[1].split('T')[0])).dt.strftime('%Y-%m-%d')
df.rename(columns={'index': 'Date', 0: 'Mean NDVI'}, inplace=True)
st.write(df)

# plot the time series
st.write("Time Series Plot")
st.line_chart(df.set_index('Date'))

st.write(f"Overall Mean NDVI: {df['Mean NDVI'].mean():.2f}")