Zeamays3427's picture
Update app.py
8ecc298 verified
raw
history blame
8.57 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from openai import OpenAI
import os
import spacy
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
# Set OpenAI API key from environment variables
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Load the tokenizer and the pretrained classification model
tokenizer = AutoTokenizer.from_pretrained("hamzab/roberta-fake-news-classification")
model = AutoModelForSequenceClassification.from_pretrained("hamzab/roberta-fake-news-classification")
# Load spaCy model for keyword extraction
import spacy.cli
try:
nlp = spacy.load('en_core_web_sm')
except OSError:
# If spaCy model is not available, download it
spacy.cli.download("en_core_web_sm")
nlp = spacy.load('en_core_web_sm')
# Load the WELFake dataset and extract top 500 TF-IDF keywords
def load_data():
# Load WELFake dataset from CSV file
wel_fake_data = pd.read_csv('WELFake_Dataset.csv')
wel_fake_data.dropna(subset=['text'], inplace=True) # Remove rows with missing 'text'
# Create a TF-IDF vectorizer and fit it on the dataset's text column
vectorizer = TfidfVectorizer(max_features=500, stop_words='english')
X = vectorizer.fit_transform(wel_fake_data['text'])
# Get the top 500 keywords from the dataset
top_keywords = vectorizer.get_feature_names_out()
return top_keywords
# Load top TF-IDF keywords from the WELFake dataset
top_keywords = load_data()
# Function to extract keywords using spaCy and matching them with TF-IDF keywords
def extract_keywords(text):
# Use spaCy to extract keywords (nouns and proper nouns)
doc = nlp(text)
spacy_keywords = [token.text for token in doc if
token.is_alpha and not token.is_stop and token.pos_ in ['NOUN', 'PROPN']]
# Use TF-IDF to match keywords in the input text with the top keywords from the dataset
tfidf_keywords = [kw for kw in top_keywords if kw.lower() in text.lower()]
# Combine the keywords from both sources and remove duplicates
all_keywords = list(set(spacy_keywords + tfidf_keywords))
return all_keywords
# Function to predict whether the news is real or fake using the classification model
def predict(title, text):
# Combine the title and text as input to the model
input_text = title + " " + text
# Tokenize the input and prepare it for the model
inputs = tokenizer.encode_plus(
input_text,
add_special_tokens=True,
max_length=512,
truncation=True,
padding='max_length',
return_tensors="pt"
)
# Set the model to evaluation mode
model.eval()
# Perform the prediction using the model
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=1).squeeze()
prediction_value = torch.argmax(probabilities).item()
# Map the model's output to 'Fake' or 'Real'
if prediction_value == 0:
label = 'Fake'
else:
label = 'Real'
# Get the probability for each class
fake_prob = probabilities[0].item() * 100
real_prob = probabilities[1].item() * 100
# Extract keywords from the input text
keywords = extract_keywords(text)
return label, fake_prob, real_prob, keywords
# Main function that predicts and explains the results
def predict_and_explain(title, text):
# Predict whether the news is real or fake, and extract keywords
label, fake_prob, real_prob, keywords = predict(title, text)
# If the news is classified as fake, generate suggestions
if label == 'Fake':
suggestions = generate_suggestions(title, text, keywords)
return f"""
**Prediction**: Fake News
**Probability**: {fake_prob:.2f}% Fake, {real_prob:.2f}% Real
**Keywords**: {', '.join(keywords)}
**Suggestions**:
{suggestions}
"""
else:
# If the news is real, just show the prediction and keywords
return f"""
**Prediction**: Real News
**Probability**: {real_prob:.2f}% Real, {fake_prob:.2f}% Fake
**Keywords**: {', '.join(keywords)}
"""
# Function to generate suggestions for fact-checking
def generate_suggestions(title, text, keywords):
# Construct the prompt for GPT based on the title, text, and keywords
prompt = f"""
You are a specialist in fact-checking. Based on the title, text, and keywords of the fake news,
please suggest some ways to know more about the facts. Please give recommendations that are easy to accept.
Keywords: {', '.join(keywords)}
Title: {title}
Text: {text}
"""
try:
# Use OpenAI GPT-4 API to generate suggestions using chat completion
response = client.chat.completions.create(
model="gpt-4", # Use the GPT-4 model
messages=[
{"role": "system", "content": "You are a helpful assistant specialized in fact-checking."},
{"role": "user", "content": prompt} # Pass the constructed prompt as user input
],
max_tokens=256, # Set the maximum number of tokens
temperature=0.7 # Control the diversity of the generated text
)
# Correctly access the generated suggestions from the API response
suggestions = response.choices[0].message.content.strip()
except Exception as e:
# If there's an error, set a default error message and print the exception details for debugging
suggestions = f"Unable to generate suggestions at this time. Error: {str(e)}"
print(f"Error generating suggestions: {e}") # Debug: print the error details to the console
return suggestions
# Custom CSS styles
custom_css = """
.gr-interface {
background-color: #f8f9fa;
}
.gr-form {
background-color: white;
padding: 2rem;
border-radius: 1rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.gr-input {
border: 2px solid #e9ecef;
border-radius: 0.5rem;
transition: border-color 0.3s ease;
}
.gr-input:focus {
border-color: #4a90e2;
box-shadow: 0 0 0 2px rgba(74, 144, 226, 0.2);
}
.gr-button {
background-color: #4a90e2;
border: none;
border-radius: 0.5rem;
color: white;
transition: background-color 0.3s ease;
}
.gr-button:hover {
background-color: #357abd;
}
.footer {
text-align: center;
margin-top: 2rem;
color: #6c757d;
}
"""
# Create custom theme
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
neutral_hue="gray",
spacing_size=gr.themes.sizes.spacing_lg,
radius_size=gr.themes.sizes.radius_lg,
font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"]
).set(
body_background_fill="#f8f9fa",
body_background_fill_dark="#1a1b1e",
button_primary_background_fill="#4a90e2",
button_primary_background_fill_hover="#357abd",
button_primary_text_color="white",
input_background_fill="white",
input_border_width="2px",
input_shadow="0 2px 4px rgba(0,0,0,0.05)",
)
# Gradio interface setup
with gr.Blocks(theme=theme, css=custom_css) as iface:
gr.Markdown(
"""
# πŸ” Fake News Detection & Analysis System
### Your Tool for Identifying Misinformation and Finding Facts
Enter a news article's title and content below to:
- Analyze the authenticity of the news
- Extract key topics and themes
- Get fact-checking recommendations
"""
)
with gr.Row():
with gr.Column():
title_input = gr.Textbox(
label="πŸ“° News Title",
placeholder="Enter the news title here...",
lines=1
)
text_input = gr.Textbox(
label="πŸ“ News Content",
placeholder="Enter the news content here...",
lines=10
)
submit_btn = gr.Button("Analyze Now πŸ”", variant="primary")
output = gr.Markdown(label="Analysis Results")
# Set submit button action
submit_btn.click(
fn=predict_and_explain,
inputs=[title_input, text_input],
outputs=output,
)
# Add footer
gr.Markdown(
"""
<div class="footer">
πŸ’‘ Note: This system uses advanced AI models for analysis. Results should be used as a reference.
Always maintain critical thinking and independent judgment.
</div>
""",
visible=True
)
# Launch the application
iface.launch()