File size: 8,883 Bytes
c8e5a0b
 
 
8bac67e
c8e5a0b
 
 
 
 
 
18769cb
c8e5a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71ae550
 
c8e5a0b
 
 
 
 
 
 
71ae550
 
 
 
c8e5a0b
 
 
71ae550
c8e5a0b
71ae550
 
 
 
c8e5a0b
ad59972
 
 
 
 
 
71ae550
 
 
 
ad59972
 
71ae550
ad59972
 
 
 
 
 
 
 
 
71ae550
 
 
 
 
ad59972
 
71ae550
ad59972
 
 
 
 
 
 
71ae550
 
 
c8e5a0b
 
 
050d8f1
 
 
 
 
 
c9a08b3
c8e5a0b
c9a08b3
18769cb
8ecc298
18769cb
c9a08b3
 
18769cb
d8a3107
c9a08b3
c8e5a0b
050d8f1
c9a08b3
 
 
c8e5a0b
050d8f1
c9a08b3
050d8f1
 
c8e5a0b
 
8ecc298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8e5a0b
 
8ecc298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from openai import OpenAI
import os
import spacy
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer

# Set OpenAI API key from environment variables
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

# Load the tokenizer and the pretrained classification model
tokenizer = AutoTokenizer.from_pretrained("hamzab/roberta-fake-news-classification")
model = AutoModelForSequenceClassification.from_pretrained("hamzab/roberta-fake-news-classification")

# Load spaCy model for keyword extraction
import spacy.cli

try:
    nlp = spacy.load('en_core_web_sm')
except OSError:
    # If spaCy model is not available, download it
    spacy.cli.download("en_core_web_sm")
    nlp = spacy.load('en_core_web_sm')

# Load the WELFake dataset and extract top 500 TF-IDF keywords
def load_data():
    # Load WELFake dataset from CSV file
    wel_fake_data = pd.read_csv('WELFake_Dataset.csv')
    wel_fake_data.dropna(subset=['text'], inplace=True)  # Remove rows with missing 'text'

    # Create a TF-IDF vectorizer and fit it on the dataset's text column
    vectorizer = TfidfVectorizer(max_features=500, stop_words='english')
    X = vectorizer.fit_transform(wel_fake_data['text'])

    # Get the top 500 keywords from the dataset
    top_keywords = vectorizer.get_feature_names_out()
    return top_keywords

# Load top TF-IDF keywords from the WELFake dataset
top_keywords = load_data()

# Function to extract keywords using spaCy and matching them with TF-IDF keywords
def extract_keywords(text):
    # Use spaCy to extract keywords (nouns and proper nouns)
    doc = nlp(text)
    spacy_keywords = [token.text for token in doc if
                      token.is_alpha and not token.is_stop and token.pos_ in ['NOUN', 'PROPN']]

    # Use TF-IDF to match keywords in the input text with the top keywords from the dataset
    tfidf_keywords = [kw for kw in top_keywords if kw.lower() in text.lower()]

    # Combine the keywords from both sources and remove duplicates
    all_keywords = list(set(spacy_keywords + tfidf_keywords))

    return all_keywords

# Function to predict whether the news is real or fake using the classification model
def predict(title, text):
    # Combine the title and text as input to the model
    input_text = title + " " + text

    # Tokenize the input and prepare it for the model
    inputs = tokenizer.encode_plus(
        input_text,
        add_special_tokens=True,
        max_length=512,
        truncation=True,
        padding='max_length',
        return_tensors="pt"
    )

    # Set the model to evaluation mode
    model.eval()

    # Perform the prediction using the model
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probabilities = torch.softmax(logits, dim=1).squeeze()
        prediction_value = torch.argmax(probabilities).item()

    # Map the model's output to 'Fake' or 'Real'
    if prediction_value == 0:
        label = 'Fake'
    else:
        label = 'Real'

    # Get the probability for each class
    fake_prob = probabilities[0].item() * 100
    real_prob = probabilities[1].item() * 100

    # Extract keywords from the input text
    keywords = extract_keywords(text)

    return label, fake_prob, real_prob, keywords

# Main function that predicts and explains the results
def predict_and_explain(title, text):
    # Predict whether the news is real or fake, and extract keywords
    label, fake_prob, real_prob, keywords = predict(title, text)

    # Format keywords with line breaks after every 5 keywords
    formatted_keywords = []
    for i in range(0, len(keywords), 5):
        formatted_keywords.append(', '.join(keywords[i:i+5]))
    keywords_text = ',\n'.join(formatted_keywords)

    # If the news is classified as fake, generate suggestions
    if label == 'Fake':
        suggestions = generate_suggestions(title, text, keywords)
        return f"""
## πŸ” Analysis Results

**Prediction**: Fake News

**Probability**:
- Fake: {fake_prob:.2f}%
- Real: {real_prob:.2f}%

**Keywords**:
{keywords_text}

**Fact-Checking Suggestions**:
{suggestions}
"""
    else:
        # If the news is real, just show the prediction and keywords
        return f"""
## πŸ” Analysis Results

**Prediction**: Real News

**Probability**:
- Real: {real_prob:.2f}%
- Fake: {fake_prob:.2f}%

**Keywords**:
{keywords_text}
"""

# Function to generate suggestions for fact-checking
def generate_suggestions(title, text, keywords):
    # Construct the prompt for GPT based on the title, text, and keywords
    prompt = f"""
    You are a specialist in fact-checking. Based on the title, text, and keywords of the fake news, 
    please suggest some ways to know more about the facts. Please give recommendations that are easy to accept.
    Keywords: {', '.join(keywords)}
    Title: {title}
    Text: {text}
    """
    
    try:
        # Use OpenAI GPT-4 API to generate suggestions using chat completion
        response = client.chat.completions.create(
            model="gpt-4",  # Use the GPT-4 model
            messages=[
                {"role": "system", "content": "You are a helpful assistant specialized in fact-checking."},
                {"role": "user", "content": prompt}  # Pass the constructed prompt as user input
            ],
            max_tokens=256,  # Set the maximum number of tokens
            temperature=0.7  # Control the diversity of the generated text
        )
        
        # Correctly access the generated suggestions from the API response
        suggestions = response.choices[0].message.content.strip()
    
    except Exception as e:
        # If there's an error, set a default error message and print the exception details for debugging
        suggestions = f"Unable to generate suggestions at this time. Error: {str(e)}"
        print(f"Error generating suggestions: {e}")  # Debug: print the error details to the console

    return suggestions

# Custom CSS styles
custom_css = """
.gr-interface {
    background-color: #f8f9fa;
}
.gr-form {
    background-color: white;
    padding: 2rem;
    border-radius: 1rem;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.gr-input {
    border: 2px solid #e9ecef;
    border-radius: 0.5rem;
    transition: border-color 0.3s ease;
}
.gr-input:focus {
    border-color: #4a90e2;
    box-shadow: 0 0 0 2px rgba(74, 144, 226, 0.2);
}
.gr-button {
    background-color: #4a90e2;
    border: none;
    border-radius: 0.5rem;
    color: white;
    transition: background-color 0.3s ease;
}
.gr-button:hover {
    background-color: #357abd;
}
.footer {
    text-align: center;
    margin-top: 2rem;
    color: #6c757d;
}
"""

# Create custom theme
theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="gray",
    neutral_hue="gray",
    spacing_size=gr.themes.sizes.spacing_lg,
    radius_size=gr.themes.sizes.radius_lg,
    font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"]
).set(
    body_background_fill="#f8f9fa",
    body_background_fill_dark="#1a1b1e",
    button_primary_background_fill="#4a90e2",
    button_primary_background_fill_hover="#357abd",
    button_primary_text_color="white",
    input_background_fill="white",
    input_border_width="2px",
    input_shadow="0 2px 4px rgba(0,0,0,0.05)",
)

# Gradio interface setup
with gr.Blocks(theme=theme, css=custom_css) as iface:
    gr.Markdown(
        """
        # πŸ” Fake News Detection & Analysis System
        
        ### Your Tool for Identifying Misinformation and Finding Facts
        
        Enter a news article's title and content below to:
        - Analyze the authenticity of the news
        - Extract key topics and themes
        - Get fact-checking recommendations
        """
    )
    
    with gr.Row():
        with gr.Column():
            title_input = gr.Textbox(
                label="πŸ“° News Title",
                placeholder="Enter the news title here...",
                lines=1
            )
            text_input = gr.Textbox(
                label="πŸ“ News Content",
                placeholder="Enter the news content here...",
                lines=10
            )
            submit_btn = gr.Button("Analyze Now πŸ”", variant="primary")
        
    output = gr.Markdown(label="Analysis Results")
    
    # Set submit button action
    submit_btn.click(
        fn=predict_and_explain,
        inputs=[title_input, text_input],
        outputs=output,
    )
    
    # Add footer
    gr.Markdown(
        """
        <div class="footer">
        πŸ’‘ Note: This system uses advanced AI models for analysis. Results should be used as a reference. 
        Always maintain critical thinking and independent judgment.
        </div>
        """,
        visible=True
    )

# Launch the application
iface.launch()