Spaces:
Running
Running
File size: 6,015 Bytes
c8e5a0b 18769cb c8e5a0b 050d8f1 18769cb c8e5a0b 18769cb c8e5a0b 050d8f1 18769cb c8e5a0b 050d8f1 c8e5a0b 050d8f1 c8e5a0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import openai
import os
import spacy
import subprocess
import sys
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
# Set OpenAI API key from environment variables
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Load the tokenizer and the pretrained classification model
tokenizer = AutoTokenizer.from_pretrained("hamzab/roberta-fake-news-classification")
model = AutoModelForSequenceClassification.from_pretrained("hamzab/roberta-fake-news-classification")
# Load spaCy model for keyword extraction
import spacy.cli
try:
nlp = spacy.load('en_core_web_sm')
except OSError:
# If spaCy model is not available, download it
spacy.cli.download("en_core_web_sm")
nlp = spacy.load('en_core_web_sm')
# Load the WELFake dataset and extract top 500 TF-IDF keywords
def load_data():
# Load WELFake dataset from CSV file
wel_fake_data = pd.read_csv('WELFake_Dataset.csv')
wel_fake_data.dropna(subset=['text'], inplace=True) # Remove rows with missing 'text'
# Create a TF-IDF vectorizer and fit it on the dataset's text column
vectorizer = TfidfVectorizer(max_features=500, stop_words='english')
X = vectorizer.fit_transform(wel_fake_data['text'])
# Get the top 500 keywords from the dataset
top_keywords = vectorizer.get_feature_names_out()
return top_keywords
# Load top TF-IDF keywords from the WELFake dataset
top_keywords = load_data()
# Function to extract keywords using spaCy and matching them with TF-IDF keywords
def extract_keywords(text):
# Use spaCy to extract keywords (nouns and proper nouns)
doc = nlp(text)
spacy_keywords = [token.text for token in doc if
token.is_alpha and not token.is_stop and token.pos_ in ['NOUN', 'PROPN']]
# Use TF-IDF to match keywords in the input text with the top keywords from the dataset
tfidf_keywords = [kw for kw in top_keywords if kw.lower() in text.lower()]
# Combine the keywords from both sources and remove duplicates
all_keywords = list(set(spacy_keywords + tfidf_keywords))
return all_keywords
# Function to predict whether the news is real or fake using the classification model
def predict(title, text):
# Combine the title and text as input to the model
input_text = title + " " + text
# Tokenize the input and prepare it for the model
inputs = tokenizer.encode_plus(
input_text,
add_special_tokens=True,
max_length=512,
truncation=True,
padding='max_length',
return_tensors="pt"
)
# Set the model to evaluation mode
model.eval()
# Perform the prediction using the model
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=1)
prediction_value = torch.argmax(probabilities, dim=1).item()
# Map the model's output to 'Fake' or 'Real'
if prediction_value == 0:
label = 'Fake'
else:
label = 'Real'
# Extract keywords from the input text
keywords = extract_keywords(text)
return label, keywords
def generate_suggestions(title, text, keywords):
# Construct the prompt for GPT based on the title, text, and keywords
prompt = f"""
You are a specialist in fact-checking. Based on the title, text, and keywords of the fake news,
please suggest some ways to know more about the facts. Please give recommendations that are easy to accept.
Keywords: {', '.join(keywords)}
Title: {title}
Text: {text}
"""
try:
# Call OpenAI's chat completion method using GPT-4 model
response = client.chat.completions.create(
model="gpt-4", # Using the GPT-4 model
messages=[
{"role": "system", "content": "You are a helpful assistant specialized in fact-checking."}, # System role definition
{"role": "user", "content": prompt} # User input (the constructed prompt)
],
max_tokens=4000, # Set the maximum token limit to 4000
temperature=0.7, # Controls the randomness in the generated text
)
# Extract and clean the suggestions from the API response
suggestions = response.choices[0].message["content"].strip()
except Exception as e:
# If there's an error, set a default error message and print the exception details for debugging
suggestions = "Unable to generate suggestions at this time."
print(f"Error generating suggestions: {e}") # Debug: print the error details to the console
return suggestions
# Main function that predicts and explains the results
def predict_and_explain(title, text):
# Predict whether the news is real or fake, and extract keywords
label, keywords = predict(title, text)
# If the news is classified as fake, generate suggestions
if label == 'Fake':
suggestions = generate_suggestions(title, text, keywords)
return f"""
**Prediction**: Fake News
**Keywords**: {', '.join(keywords)}
**Suggestions**:
{suggestions}
"""
else:
# If the news is real, just show the prediction and keywords
return f"""
**Prediction**: Real News
**Keywords**: {', '.join(keywords)}
"""
# Gradio interface setup
iface = gr.Interface(
fn=predict_and_explain, # The function to handle user input and return predictions
inputs=[
gr.Textbox(label="Title"), # Textbox for the news title
gr.Textbox(label="Text", lines=10) # Textbox for the news content
],
outputs="markdown", # Output format is markdown
title="Fake News Detector with Suggestions", # Title of the Gradio app
description="Enter the news title and content to check if it's fake. If fake, get suggestions on how to know more about the facts.",
# Description of the app
)
# Launch the Gradio app
iface.launch()
|