File size: 14,003 Bytes
0f82ede c95c282 ecaceca 528146d 46ea492 6ce6beb 0f82ede 528146d ecaceca 0f82ede ecaceca 943c198 6ce6beb 2e87ddf 0f82ede 2e87ddf 943c198 ecaceca 2e87ddf 6495c45 2e87ddf 0f82ede 2e87ddf 6495c45 572378b 46ea492 0f82ede 46ea492 a916880 0f82ede 46ea492 c5eed5a 0f82ede 46ea492 c5eed5a 46ea492 0f82ede 6b2d7b0 0f82ede a916880 0f82ede c5eed5a 0f82ede 6ce6beb 0f82ede 6ce6beb 0f82ede 6b2d7b0 0f82ede 6b2d7b0 0f82ede 6b2d7b0 0f82ede 6b2d7b0 0f82ede 6b2d7b0 0f82ede ecaceca 0f82ede ecaceca 0f82ede ecaceca 0f82ede ecaceca 0f82ede ecaceca 0f82ede ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 0f82ede ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 2e87ddf ecaceca 0f82ede ecaceca 0f82ede ecaceca eda791a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import speech_recognition as sr
from sentiment_analysis import analyze_sentiment, transcribe_with_chunks
from product_recommender import ProductRecommender
from objection_handler import ObjectionHandler
from google_sheets import fetch_call_data, store_data_in_sheet
from sentence_transformers import SentenceTransformer
from env_setup import config
import re
import uuid
import pandas as pd
import plotly.express as px
import streamlit as st
import numpy as np
from io import BytesIO
import wave
import threading
import queue
from streamlit_webrtc import webrtc_streamer, WebRtcMode, AudioProcessorBase
# Initialize components
objection_handler = ObjectionHandler("objections.csv")
product_recommender = ProductRecommender("recommendations.csv")
model = SentenceTransformer('all-MiniLM-L6-v2')
# Queue to hold transcribed text
transcription_queue = queue.Queue()
def generate_comprehensive_summary(chunks):
full_text = " ".join([chunk[0] for chunk in chunks])
total_chunks = len(chunks)
sentiments = [chunk[1] for chunk in chunks]
context_keywords = {
'product_inquiry': ['dress', 'product', 'price', 'stock'],
'pricing': ['cost', 'price', 'budget'],
'negotiation': ['installment', 'payment', 'manage']
}
themes = []
for keyword_type, keywords in context_keywords.items():
if any(keyword.lower() in full_text.lower() for keyword in keywords):
themes.append(keyword_type)
positive_count = sentiments.count('POSITIVE')
negative_count = sentiments.count('NEGATIVE')
neutral_count = sentiments.count('NEUTRAL')
key_interactions = []
for chunk in chunks:
if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
key_interactions.append(chunk[0])
summary = f"Conversation Summary:\n"
if 'product_inquiry' in themes:
summary += "• Customer initiated a product inquiry about items.\n"
if 'pricing' in themes:
summary += "• Price and budget considerations were discussed.\n"
if 'negotiation' in themes:
summary += "• Customer and seller explored flexible payment options.\n"
summary += f"\nConversation Sentiment:\n"
summary += f"• Positive Interactions: {positive_count}\n"
summary += f"• Negative Interactions: {negative_count}\n"
summary += f"• Neutral Interactions: {neutral_count}\n"
summary += "\nKey Conversation Points:\n"
for interaction in key_interactions[:3]:
summary += f"• {interaction}\n"
if positive_count > negative_count:
summary += "\nOutcome: Constructive and potentially successful interaction."
elif negative_count > positive_count:
summary += "\nOutcome: Interaction may require further follow-up."
else:
summary += "\nOutcome: Neutral interaction with potential for future engagement."
return summary
def is_valid_input(text):
text = text.strip().lower()
if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
return False
return True
def is_relevant_sentiment(sentiment_score):
return sentiment_score > 0.4
def calculate_overall_sentiment(sentiment_scores):
if sentiment_scores:
average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
overall_sentiment = (
"POSITIVE" if average_sentiment > 0 else
"NEGATIVE" if average_sentiment < 0 else
"NEUTRAL"
)
else:
overall_sentiment = "NEUTRAL"
return overall_sentiment
def handle_objection(text):
query_embedding = model.encode([text])
distances, indices = objection_handler.index.search(query_embedding, 1)
if distances[0][0] < 1.5:
responses = objection_handler.handle_objection(text)
return "\n".join(responses) if responses else "No objection response found."
return "No objection response found."
def transcribe_audio(audio_bytes, sample_rate=16000):
try:
with BytesIO() as wav_buffer:
with wave.open(wav_buffer, 'wb') as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio_bytes)
st.write("Audio saved, attempting transcription...")
chunks = transcribe_with_chunks(wav_buffer.getvalue())
if chunks:
st.write(f"Transcribed chunks: {chunks}")
return chunks[-1][0]
except Exception as e:
st.error(f"Error transcribing audio: {e}")
return None
class AudioProcessor(AudioProcessorBase):
def __init__(self):
self.transcription_queue = transcription_queue
def recv(self, frame):
audio_data = frame.to_ndarray()
st.write(f"Received audio frame: {audio_data.shape}")
audio_bytes = (audio_data * 32767).astype(np.int16).tobytes()
text = transcribe_audio(audio_bytes)
if text:
st.write(f"Transcribed text: {text}")
self.transcription_queue.put(text)
return frame
def real_time_analysis():
st.info("Listening... Say 'stop' to end the process.")
webrtc_ctx = webrtc_streamer(
key="real-time-audio",
mode=WebRtcMode.SENDONLY,
audio_processor_factory=AudioProcessor,
media_stream_constraints={"audio": True, "video": False},
)
if webrtc_ctx.state.playing:
while not transcription_queue.empty():
text = transcription_queue.get()
st.write(f"*Recognized Text:* {text}")
sentiment, score = analyze_sentiment(text)
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
objection_response = handle_objection(text)
st.write(f"*Objection Response:* {objection_response}")
recommendations = []
if is_valid_input(text) and is_relevant_sentiment(score):
query_embedding = model.encode([text])
distances, indices = product_recommender.index.search(query_embedding, 1)
if distances[0][0] < 1.5:
recommendations = product_recommender.get_recommendations(text)
if recommendations:
st.write("*Product Recommendations:*")
for rec in recommendations:
st.write(rec)
def run_app():
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
st.title("AI Sales Call Assistant")
st.markdown("""
<style>
html, body {
font-family: 'Roboto', sans-serif;
background-color: #f5f7fa;
}
.header-container {
background: linear-gradient(135deg, #2980b9, #6dd5fa, #ffffff);
padding: 20px;
border-radius: 15px;
margin-bottom: 30px;
text-align: center;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.section {
background: linear-gradient(135deg, #ffffff, #f5f7fa);
padding: 25px;
border-radius: 15px;
margin-bottom: 30px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.header {
font-size: 2.5em;
font-weight: 800;
color: #2980b9;
margin: 0;
padding: 10px;
letter-spacing: 1px;
}
.subheader {
font-size: 1.8em;
font-weight: 600;
color: #2980b9;
margin-top: 20px;
margin-bottom: 10px;
text-align: left;
}
.table-container {
background: #ffffff;
padding: 20px;
border-radius: 10px;
margin: 20px 0;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
.stButton > button {
background: linear-gradient(135deg, #2980b9, #6dd5fa);
color: white;
border: none;
padding: 10px 20px;
border-radius: 5px;
transition: all 0.3s ease;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
.stButton > button:hover {
background: linear-gradient(135deg, #2396dc, #6dd5fa);
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2);
}
.stTabs [data-baseweb="tab-list"] {
gap: 24px;
background: #f5f7fa;
padding: 10px;
border-radius: 10px;
}
.stTabs [data-baseweb="tab"] {
background-color: transparent;
border-radius: 4px;
color: #2980b9;
font-weight: 600;
padding: 10px 16px;
}
.stTabs [aria-selected="true"] {
background: linear-gradient(120deg, #2980b9, #6dd5fa);
color: white;
}
.success {
background: linear-gradient(135deg, #43A047, #2E7D32);
color: white;
padding: 10px;
border-radius: 5px;
margin: 10px 0;
}
.error {
background: linear-gradient(135deg, #E53935, #C62828);
color: white;
padding: 10px;
border-radius: 5px;
margin: 10px 0;
}
.warning {
background: linear-gradient(135deg, #FB8C00, #F57C00);
color: white;
padding: 10px;
border-radius: 5px;
margin: 10px 0;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<div class="header-container">
<h1 class="header">AI Sales Call Assistant</h1>
</div>
""", unsafe_allow_html=True)
st.sidebar.title("Navigation")
app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])
if app_mode == "Real-Time Call Analysis":
st.markdown('<div class="section">', unsafe_allow_html=True)
st.header("Real-Time Sales Call Analysis")
st.markdown('</div>', unsafe_allow_html=True)
if st.button("Start Listening"):
real_time_analysis()
elif app_mode == "Dashboard":
st.markdown('<div class="section">', unsafe_allow_html=True)
st.header("Call Summaries and Sentiment Analysis")
try:
data = fetch_call_data(config["google_sheet_id"])
if data.empty:
st.warning("No data available in the Google Sheet.")
else:
sentiment_counts = data['Sentiment'].value_counts()
product_mentions = filter_product_mentions(data[['Chunk']].values.tolist(), product_titles)
product_mentions_df = pd.DataFrame(list(product_mentions.items()), columns=['Product', 'Count'])
col1, col2 = st.columns(2)
with col1:
st.subheader("Sentiment Distribution")
fig_bar = px.bar(
x=sentiment_counts.index,
y=sentiment_counts.values,
title='Number of Calls by Sentiment',
labels={'x': 'Sentiment', 'y': 'Number of Calls'},
color=sentiment_counts.index,
color_discrete_map={
'POSITIVE': 'green',
'NEGATIVE': 'red',
'NEUTRAL': 'blue'
}
)
st.plotly_chart(fig_bar)
with col2:
st.subheader("Most Mentioned Products")
fig_products = px.pie(
values=product_mentions_df['Count'],
names=product_mentions_df['Product'],
title='Most Mentioned Products'
)
st.plotly_chart(fig_products)
st.subheader("All Calls")
display_data = data.copy()
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
call_details = data[data['Call ID'] == call_id]
if not call_details.empty:
st.subheader("Detailed Call Information")
st.write(f"**Call ID:** {call_id}")
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
st.subheader("Full Call Summary")
st.text_area("Summary:",
value=call_details.iloc[0]['Summary'],
height=200,
disabled=True)
st.subheader("Conversation Chunks")
for _, row in call_details.iterrows():
if pd.notna(row['Chunk']):
st.write(f"**Chunk:** {row['Chunk']}")
st.write(f"**Sentiment:** {row['Sentiment']}")
st.write("---")
else:
st.error("No details available for the selected Call ID.")
except Exception as e:
st.error(f"Error loading dashboard: {e}")
st.markdown('</div>', unsafe_allow_html=True)
if __name__ == "__main__":
run_app() |