File size: 14,003 Bytes
0f82ede
c95c282
ecaceca
 
 
 
 
 
 
 
 
528146d
46ea492
 
 
6ce6beb
 
0f82ede
528146d
ecaceca
0f82ede
 
ecaceca
943c198
6ce6beb
 
 
2e87ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f82ede
2e87ddf
 
 
 
 
 
 
 
 
 
943c198
ecaceca
 
 
 
 
 
 
 
 
2e87ddf
 
 
 
 
 
 
 
 
 
 
6495c45
2e87ddf
 
 
0f82ede
2e87ddf
 
 
6495c45
572378b
46ea492
 
 
0f82ede
 
 
46ea492
 
a916880
0f82ede
46ea492
c5eed5a
0f82ede
46ea492
c5eed5a
46ea492
 
0f82ede
 
 
6b2d7b0
0f82ede
 
a916880
0f82ede
 
 
c5eed5a
0f82ede
 
6ce6beb
 
 
 
 
 
 
0f82ede
6ce6beb
 
 
0f82ede
 
 
 
6b2d7b0
0f82ede
 
6b2d7b0
0f82ede
 
6b2d7b0
0f82ede
 
 
 
6b2d7b0
0f82ede
 
6b2d7b0
0f82ede
 
 
 
ecaceca
 
 
 
 
0f82ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecaceca
 
 
 
0f82ede
ecaceca
0f82ede
 
 
ecaceca
 
0f82ede
ecaceca
 
 
 
 
 
 
0f82ede
 
 
 
ecaceca
 
 
 
2e87ddf
 
ecaceca
 
 
 
2e87ddf
 
ecaceca
 
 
 
 
0f82ede
 
 
 
 
 
 
 
 
ecaceca
 
 
 
 
 
 
 
 
 
 
 
 
2e87ddf
ecaceca
2e87ddf
 
 
ecaceca
2e87ddf
ecaceca
 
2e87ddf
ecaceca
 
0f82ede
ecaceca
 
 
 
0f82ede
ecaceca
 
eda791a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import speech_recognition as sr
from sentiment_analysis import analyze_sentiment, transcribe_with_chunks
from product_recommender import ProductRecommender
from objection_handler import ObjectionHandler
from google_sheets import fetch_call_data, store_data_in_sheet
from sentence_transformers import SentenceTransformer
from env_setup import config
import re
import uuid
import pandas as pd
import plotly.express as px
import streamlit as st
import numpy as np
from io import BytesIO
import wave
import threading
import queue
from streamlit_webrtc import webrtc_streamer, WebRtcMode, AudioProcessorBase

# Initialize components
objection_handler = ObjectionHandler("objections.csv")
product_recommender = ProductRecommender("recommendations.csv")
model = SentenceTransformer('all-MiniLM-L6-v2')

# Queue to hold transcribed text
transcription_queue = queue.Queue()

def generate_comprehensive_summary(chunks):
    full_text = " ".join([chunk[0] for chunk in chunks])
    total_chunks = len(chunks)
    sentiments = [chunk[1] for chunk in chunks]
    
    context_keywords = {
        'product_inquiry': ['dress', 'product', 'price', 'stock'],
        'pricing': ['cost', 'price', 'budget'],
        'negotiation': ['installment', 'payment', 'manage']
    }
    
    themes = []
    for keyword_type, keywords in context_keywords.items():
        if any(keyword.lower() in full_text.lower() for keyword in keywords):
            themes.append(keyword_type)
    
    positive_count = sentiments.count('POSITIVE')
    negative_count = sentiments.count('NEGATIVE')
    neutral_count = sentiments.count('NEUTRAL')
    
    key_interactions = []
    for chunk in chunks:
        if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
            key_interactions.append(chunk[0])
    
    summary = f"Conversation Summary:\n"
    
    if 'product_inquiry' in themes:
        summary += "• Customer initiated a product inquiry about items.\n"
    
    if 'pricing' in themes:
        summary += "• Price and budget considerations were discussed.\n"
    
    if 'negotiation' in themes:
        summary += "• Customer and seller explored flexible payment options.\n"
    
    summary += f"\nConversation Sentiment:\n"
    summary += f"• Positive Interactions: {positive_count}\n"
    summary += f"• Negative Interactions: {negative_count}\n"
    summary += f"• Neutral Interactions: {neutral_count}\n"
    
    summary += "\nKey Conversation Points:\n"
    for interaction in key_interactions[:3]:
        summary += f"• {interaction}\n"
    
    if positive_count > negative_count:
        summary += "\nOutcome: Constructive and potentially successful interaction."
    elif negative_count > positive_count:
        summary += "\nOutcome: Interaction may require further follow-up."
    else:
        summary += "\nOutcome: Neutral interaction with potential for future engagement."
    
    return summary

def is_valid_input(text):
    text = text.strip().lower()
    if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
        return False
    return True

def is_relevant_sentiment(sentiment_score):
    return sentiment_score > 0.4

def calculate_overall_sentiment(sentiment_scores):
    if sentiment_scores:
        average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
        overall_sentiment = (
            "POSITIVE" if average_sentiment > 0 else
            "NEGATIVE" if average_sentiment < 0 else
            "NEUTRAL"
        )
    else:
        overall_sentiment = "NEUTRAL"
    return overall_sentiment

def handle_objection(text):
    query_embedding = model.encode([text])
    distances, indices = objection_handler.index.search(query_embedding, 1)
    if distances[0][0] < 1.5:
        responses = objection_handler.handle_objection(text)
        return "\n".join(responses) if responses else "No objection response found."
    return "No objection response found."

def transcribe_audio(audio_bytes, sample_rate=16000):
    try:
        with BytesIO() as wav_buffer:
            with wave.open(wav_buffer, 'wb') as wf:
                wf.setnchannels(1)
                wf.setsampwidth(2)
                wf.setframerate(sample_rate)
                wf.writeframes(audio_bytes)

            st.write("Audio saved, attempting transcription...")
            chunks = transcribe_with_chunks(wav_buffer.getvalue())
            if chunks:
                st.write(f"Transcribed chunks: {chunks}")
                return chunks[-1][0]
    except Exception as e:
        st.error(f"Error transcribing audio: {e}")
    return None

class AudioProcessor(AudioProcessorBase):
    def __init__(self):
        self.transcription_queue = transcription_queue

    def recv(self, frame):
        audio_data = frame.to_ndarray()
        st.write(f"Received audio frame: {audio_data.shape}")
        audio_bytes = (audio_data * 32767).astype(np.int16).tobytes()
        text = transcribe_audio(audio_bytes)
        if text:
            st.write(f"Transcribed text: {text}")
            self.transcription_queue.put(text)
        return frame

def real_time_analysis():
    st.info("Listening... Say 'stop' to end the process.")

    webrtc_ctx = webrtc_streamer(
        key="real-time-audio",
        mode=WebRtcMode.SENDONLY,
        audio_processor_factory=AudioProcessor,
        media_stream_constraints={"audio": True, "video": False},
    )

    if webrtc_ctx.state.playing:
        while not transcription_queue.empty():
            text = transcription_queue.get()
            st.write(f"*Recognized Text:* {text}")

            sentiment, score = analyze_sentiment(text)
            st.write(f"*Sentiment:* {sentiment} (Score: {score})")

            objection_response = handle_objection(text)
            st.write(f"*Objection Response:* {objection_response}")

            recommendations = []
            if is_valid_input(text) and is_relevant_sentiment(score):
                query_embedding = model.encode([text])
                distances, indices = product_recommender.index.search(query_embedding, 1)

                if distances[0][0] < 1.5:
                    recommendations = product_recommender.get_recommendations(text)

            if recommendations:
                st.write("*Product Recommendations:*")
                for rec in recommendations:
                    st.write(rec)

def run_app():
    st.set_page_config(page_title="Sales Call Assistant", layout="wide")
    st.title("AI Sales Call Assistant")

    st.markdown("""
        <style>
            html, body {
                font-family: 'Roboto', sans-serif;
                background-color: #f5f7fa;
            }
            .header-container {
                background: linear-gradient(135deg, #2980b9, #6dd5fa, #ffffff);
                padding: 20px;
                border-radius: 15px;
                margin-bottom: 30px;
                text-align: center;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
            }
            .section {
                background: linear-gradient(135deg, #ffffff, #f5f7fa);
                padding: 25px;
                border-radius: 15px;
                margin-bottom: 30px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
            }
            .header {
                font-size: 2.5em;
                font-weight: 800;
                color: #2980b9;
                margin: 0;
                padding: 10px;
                letter-spacing: 1px;
            }
            .subheader {
                font-size: 1.8em;
                font-weight: 600;
                color: #2980b9;
                margin-top: 20px;
                margin-bottom: 10px;
                text-align: left;
            }
            .table-container {
                background: #ffffff;
                padding: 20px;
                border-radius: 10px;
                margin: 20px 0;
                box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
            }
            .stButton > button {
                background: linear-gradient(135deg, #2980b9, #6dd5fa);
                color: white;
                border: none;
                padding: 10px 20px;
                border-radius: 5px;
                transition: all 0.3s ease;
                box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
            }
            .stButton > button:hover {
                background: linear-gradient(135deg, #2396dc, #6dd5fa);
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2);
            }
            .stTabs [data-baseweb="tab-list"] {
                gap: 24px;
                background: #f5f7fa;
                padding: 10px;
                border-radius: 10px;
            }
            .stTabs [data-baseweb="tab"] {
                background-color: transparent;
                border-radius: 4px;
                color: #2980b9;
                font-weight: 600;
                padding: 10px 16px;
            }
            .stTabs [aria-selected="true"] {
                background: linear-gradient(120deg, #2980b9, #6dd5fa);
                color: white;
            }
            .success {
                background: linear-gradient(135deg, #43A047, #2E7D32);
                color: white;
                padding: 10px;
                border-radius: 5px;
                margin: 10px 0;
            }
            .error {
                background: linear-gradient(135deg, #E53935, #C62828);
                color: white;
                padding: 10px;
                border-radius: 5px;
                margin: 10px 0;
            }
            .warning {
                background: linear-gradient(135deg, #FB8C00, #F57C00);
                color: white;
                padding: 10px;
                border-radius: 5px;
                margin: 10px 0;
            }
        </style>
    """, unsafe_allow_html=True)
    
    st.markdown("""
        <div class="header-container">
            <h1 class="header">AI Sales Call Assistant</h1>
        </div>
    """, unsafe_allow_html=True)

    st.sidebar.title("Navigation")
    app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])

    if app_mode == "Real-Time Call Analysis":
        st.markdown('<div class="section">', unsafe_allow_html=True)
        st.header("Real-Time Sales Call Analysis")
        st.markdown('</div>', unsafe_allow_html=True)
        if st.button("Start Listening"):
            real_time_analysis()

    elif app_mode == "Dashboard":
        st.markdown('<div class="section">', unsafe_allow_html=True)
        st.header("Call Summaries and Sentiment Analysis")
        try:
            data = fetch_call_data(config["google_sheet_id"])
            if data.empty:
                st.warning("No data available in the Google Sheet.")
            else:
                sentiment_counts = data['Sentiment'].value_counts()

                product_mentions = filter_product_mentions(data[['Chunk']].values.tolist(), product_titles)
                product_mentions_df = pd.DataFrame(list(product_mentions.items()), columns=['Product', 'Count'])

                col1, col2 = st.columns(2)
                with col1:
                    st.subheader("Sentiment Distribution")
                    fig_bar = px.bar(
                        x=sentiment_counts.index, 
                        y=sentiment_counts.values, 
                        title='Number of Calls by Sentiment',
                        labels={'x': 'Sentiment', 'y': 'Number of Calls'},
                        color=sentiment_counts.index,
                        color_discrete_map={
                            'POSITIVE': 'green', 
                            'NEGATIVE': 'red', 
                            'NEUTRAL': 'blue'
                        }
                    )
                    st.plotly_chart(fig_bar)

                with col2:
                    st.subheader("Most Mentioned Products")
                    fig_products = px.pie(
                        values=product_mentions_df['Count'], 
                        names=product_mentions_df['Product'], 
                        title='Most Mentioned Products'
                    )
                    st.plotly_chart(fig_products)

                st.subheader("All Calls")
                display_data = data.copy()
                display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
                st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])

                unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
                call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)

                call_details = data[data['Call ID'] == call_id]
                if not call_details.empty:
                    st.subheader("Detailed Call Information")
                    st.write(f"**Call ID:** {call_id}")
                    st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
                    
                    st.subheader("Full Call Summary")
                    st.text_area("Summary:", 
                                 value=call_details.iloc[0]['Summary'], 
                                 height=200, 
                                 disabled=True)
                    
                    st.subheader("Conversation Chunks")
                    for _, row in call_details.iterrows():
                        if pd.notna(row['Chunk']):  
                            st.write(f"**Chunk:** {row['Chunk']}")
                            st.write(f"**Sentiment:** {row['Sentiment']}")
                            st.write("---")
                else:
                    st.error("No details available for the selected Call ID.")
        except Exception as e:
            st.error(f"Error loading dashboard: {e}")
        st.markdown('</div>', unsafe_allow_html=True)

if __name__ == "__main__":
    run_app()