ZamiSanj commited on
Commit
7149046
·
verified ·
1 Parent(s): d0ee60f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +122 -6
app.py CHANGED
@@ -1,9 +1,125 @@
1
  import gradio as gr
 
 
 
 
 
 
 
2
 
3
- def alternatingly_agree(message, history):
4
- if len(history) % 2 == 0:
5
- return f"Yes, I do think that '{message}'"
6
- else:
7
- return "I don't think so"
 
 
 
8
 
9
- gr.ChatInterface(alternatingly_agree).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import torch
3
+ import re, os, warnings
4
+ from langchain import PromptTemplate, LLMChain
5
+ from langchain.llms.base import LLM
6
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig
7
+ from peft import LoraConfig, get_peft_model, PeftConfig, PeftModel
8
+ warnings.filterwarnings("ignore")
9
 
10
+ def init_model_and_tokenizer(PEFT_MODEL):
11
+ config = PeftConfig.from_pretrained(PEFT_MODEL)
12
+ bnb_config = BitsAndBytesConfig(
13
+ load_in_4bit=True,
14
+ bnb_4bit_quant_type="nf4",
15
+ bnb_4bit_use_double_quant=True,
16
+ bnb_4bit_compute_dtype=torch.float16,
17
+ )
18
 
19
+ peft_base_model = AutoModelForCausalLM.from_pretrained(
20
+ config.base_model_name_or_path,
21
+ return_dict=True,
22
+ quantization_config=bnb_config,
23
+ device_map="auto",
24
+ trust_remote_code=True,
25
+ )
26
+
27
+ peft_model = PeftModel.from_pretrained(peft_base_model, PEFT_MODEL)
28
+
29
+ peft_tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
30
+ peft_tokenizer.pad_token = peft_tokenizer.eos_token
31
+
32
+ return peft_model, peft_tokenizer
33
+
34
+ def init_llm_chain(peft_model, peft_tokenizer):
35
+ class CustomLLM(LLM):
36
+ def _call(self, prompt: str, stop=None, run_manager=None) -> str:
37
+ device = "cuda:0"
38
+ peft_encoding = peft_tokenizer(prompt, return_tensors="pt").to(device)
39
+ peft_outputs = peft_model.generate(input_ids=peft_encoding.input_ids, generation_config=GenerationConfig(max_new_tokens=256, pad_token_id = peft_tokenizer.eos_token_id, \
40
+ eos_token_id = peft_tokenizer.eos_token_id, attention_mask = peft_encoding.attention_mask, \
41
+ temperature=0.4, top_p=0.6, repetition_penalty=1.3, num_return_sequences=1,))
42
+ peft_text_output = peft_tokenizer.decode(peft_outputs[0], skip_special_tokens=True)
43
+ return peft_text_output
44
+
45
+ @property
46
+ def _llm_type(self) -> str:
47
+ return "custom"
48
+
49
+ llm = CustomLLM()
50
+
51
+ template = """Answer the following question truthfully.
52
+ If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'.
53
+ If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'.
54
+
55
+ Example Format:
56
+ <HUMAN>: question here
57
+ <ASSISTANT>: answer here
58
+
59
+ Begin!
60
+
61
+ <HUMAN>: {query}
62
+ <ASSISTANT>:"""
63
+
64
+ prompt = PromptTemplate(template=template, input_variables=["query"])
65
+ llm_chain = LLMChain(prompt=prompt, llm=llm)
66
+
67
+ return llm_chain
68
+
69
+ def user(user_message, history):
70
+ return "", history + [[user_message, None]]
71
+
72
+ def bot(history):
73
+ if len(history) >= 2:
74
+ query = history[-2][0] + "\n" + history[-2][1] + "\nHere, is the next QUESTION: " + history[-1][0]
75
+ else:
76
+ query = history[-1][0]
77
+
78
+ bot_message = llm_chain.run(query)
79
+ bot_message = post_process_chat(bot_message)
80
+
81
+ history[-1][1] = ""
82
+ history[-1][1] += bot_message
83
+ return history
84
+
85
+ def post_process_chat(bot_message):
86
+ try:
87
+ bot_message = re.findall(r"<ASSISTANT>:.*?Begin!", bot_message, re.DOTALL)[1]
88
+ except IndexError:
89
+ pass
90
+
91
+ bot_message = re.split(r'<ASSISTANT>\:?\s?', bot_message)[-1].split("Begin!")[0]
92
+
93
+ bot_message = re.sub(r"^(.*?\.)(?=\n|$)", r"\1", bot_message, flags=re.DOTALL)
94
+ try:
95
+ bot_message = re.search(r"(.*\.)", bot_message, re.DOTALL).group(1)
96
+ except AttributeError:
97
+ pass
98
+
99
+ bot_message = re.sub(r"\n\d.$", "", bot_message)
100
+ bot_message = re.split(r"(Goodbye|Take care|Best Wishes)", bot_message, flags=re.IGNORECASE)[0].strip()
101
+ bot_message = bot_message.replace("\n\n", "\n")
102
+
103
+ return bot_message
104
+
105
+ model = "heliosbrahma/falcon-7b-sharded-bf16-finetuned-mental-health-conversational"
106
+ peft_model, peft_tokenizer = init_model_and_tokenizer(PEFT_MODEL = model)
107
+
108
+ with gr.Blocks() as interface:
109
+ gr.HTML("""<h1>Welcome to Mental Health Conversational AI</h1>""")
110
+ gr.Markdown(
111
+ """Chatbot specifically designed to provide psychoeducation, offer non-judgemental and empathetic support, self-assessment and monitoring.<br>
112
+ Get instant response for any mental health related queries. If the chatbot seems you need external support, then it will respond appropriately.<br>"""
113
+ )
114
+
115
+ chatbot = gr.Chatbot()
116
+ query = gr.Textbox(label="Type your query here, then press 'enter' and scroll up for response")
117
+ clear = gr.Button(value="Clear Chat History!")
118
+ clear.style(size="sm")
119
+
120
+ llm_chain = init_llm_chain(peft_model, peft_tokenizer)
121
+
122
+ query.submit(user, [query, chatbot], [query, chatbot], queue=False).then(bot, chatbot, chatbot)
123
+ clear.click(lambda: None, None, chatbot, queue=False)
124
+
125
+ interface.queue().launch()