Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
# Model name
|
6 |
+
model_name = "deepseek-ai/DeepSeek-R1"
|
7 |
+
|
8 |
+
# Load tokenizer
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
10 |
+
|
11 |
+
# Load model with quantization
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
13 |
+
model_name,
|
14 |
+
trust_remote_code=True
|
15 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
+
# Define the text generation function
|
18 |
+
def generate_response(prompt):
|
19 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
20 |
+
with torch.no_grad():
|
21 |
+
output = model.generate(**inputs, max_length=150)
|
22 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
23 |
+
|
24 |
+
# Set up Gradio UI
|
25 |
+
interface = gr.Interface(
|
26 |
+
fn=generate_response,
|
27 |
+
inputs=gr.Textbox(label="Enter your prompt"),
|
28 |
+
outputs=gr.Textbox(label="AI Response"),
|
29 |
+
title="DeepSeek-R1 Chatbot",
|
30 |
+
description="Enter a prompt and receive a response from DeepSeek-R1."
|
31 |
+
)
|
32 |
+
|
33 |
+
# Launch the app
|
34 |
+
interface.launch()
|