Zaid's picture
Update app.py
665015d verified
raw
history blame
4.2 kB
import os
from threading import Thread
from typing import Iterator
import os
from huggingface_hub import login
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 128
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
model = None
tokenizer = None
my_token = os.getenv("HF_AUTH_TOKEN")
login(token = my_token)
model_id = "stabilityai/ar-stablelm-2-chat"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
def generate(
message: str,
chat_history: list[dict],
system_prompt: str = "",
max_new_tokens: int = 128,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
conversation += chat_history
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
eos_token_id=tokenizer.eos_token_id, # Stop generation at <EOS>
temperature=temperature,
top_p=top_p,
top_k=top_k
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.7,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["السلام عليكم"],
["اعرب الجملة التالية: ذهبت الى السوق"],
["اضف تشكيل للجملة التالية: ضرب زيدا عمر"
["كم عدد بحور الشعر العربي؟"]
],
cache_examples=False,
type="messages",
)
with gr.Blocks(css_paths="style.css", fill_height=True) as demo:
# def authenticate_token(token):
# try:
# login(token)
# return "Authenticated successfully"
# except:
# return "Invalid token. Please try again."
# # Components
# token_input = gr.Textbox(label="Hugging Face Access Token", type="password", placeholder="Enter your token here...")
# auth_button = gr.Button("Authenticate")
# output = gr.Textbox(label="Output")
# auth_button.click(fn=authenticate_token, inputs=token_input, outputs=output)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()