zejunyang
update
3e99418
raw
history blame
16.7 kB
import gradio as gr
import os
import shutil
import ffmpeg
from datetime import datetime
from pathlib import Path
import numpy as np
import cv2
import torch
import spaces
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid, save_pil_imgs
from src.audio_models.model import Audio2MeshModel
from src.utils.audio_util import prepare_audio_feature
from src.utils.mp_utils import LMKExtractor
from src.utils.draw_util import FaceMeshVisualizer
from src.utils.pose_util import project_points, project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix
from src.utils.crop_face_single import crop_face
from src.audio2vid import get_headpose_temp, smooth_pose_seq
from src.utils.frame_interpolation import init_frame_interpolation_model, batch_images_interpolation_tool
config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
audio_infer_config = OmegaConf.load(config.audio_inference_config)
# prepare model
a2m_model = Audio2MeshModel(audio_infer_config['a2m_model'])
a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt'], map_location="cpu"), strict=False)
a2m_model.cuda().eval()
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to("cuda", dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device="cuda")
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device="cuda")
pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
image_enc = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path
).to(dtype=weight_dtype, device="cuda")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=weight_dtype)
lmk_extractor = LMKExtractor()
vis = FaceMeshVisualizer()
frame_inter_model = init_frame_interpolation_model()
@spaces.GPU(duration=300)
def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, length=60, seed=42):
fps = 30
cfg = 3.5
fi_step = 3
generator = torch.manual_seed(seed)
width, height = size, size
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"
save_dir = Path(f"output/{date_str}/{save_dir_name}")
save_dir.mkdir(exist_ok=True, parents=True)
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
ref_image_np = crop_face(ref_image_np, lmk_extractor)
if ref_image_np is None:
return None, Image.fromarray(ref_img)
ref_image_np = cv2.resize(ref_image_np, (size, size))
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
face_result = lmk_extractor(ref_image_np)
if face_result is None:
return None, ref_image_pil
lmks = face_result['lmks'].astype(np.float32)
ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
sample = prepare_audio_feature(input_audio, wav2vec_model_path=audio_infer_config['a2m_model']['model_path'])
sample['audio_feature'] = torch.from_numpy(sample['audio_feature']).float().cuda()
sample['audio_feature'] = sample['audio_feature'].unsqueeze(0)
# inference
pred = a2m_model.infer(sample['audio_feature'], sample['seq_len'])
pred = pred.squeeze().detach().cpu().numpy()
pred = pred.reshape(pred.shape[0], -1, 3)
pred = pred + face_result['lmks3d']
if headpose_video is not None:
pose_seq = get_headpose_temp(headpose_video)
else:
pose_seq = np.load(config['pose_temp'])
mirrored_pose_seq = np.concatenate((pose_seq, pose_seq[-2:0:-1]), axis=0)
cycled_pose_seq = np.tile(mirrored_pose_seq, (sample['seq_len'] // len(mirrored_pose_seq) + 1, 1))[:sample['seq_len']]
# project 3D mesh to 2D landmark
projected_vertices = project_points(pred, face_result['trans_mat'], cycled_pose_seq, [height, width])
pose_images = []
for i, verts in enumerate(projected_vertices):
lmk_img = vis.draw_landmarks((width, height), verts, normed=False)
pose_images.append(lmk_img)
pose_list = []
# pose_tensor_list = []
# pose_transform = transforms.Compose(
# [transforms.Resize((height, width)), transforms.ToTensor()]
# )
args_L = len(pose_images) if length==0 or length > len(pose_images) else length
args_L = min(args_L, 150)
for pose_image_np in pose_images[: args_L : fi_step]:
# pose_image_pil = Image.fromarray(cv2.cvtColor(pose_image_np, cv2.COLOR_BGR2RGB))
# pose_tensor_list.append(pose_transform(pose_image_pil))
pose_image_np = cv2.resize(pose_image_np, (width, height))
pose_list.append(pose_image_np)
pose_list = np.array(pose_list)
video_length = len(pose_list)
video = pipe(
ref_image_pil,
pose_list,
ref_pose,
width,
height,
video_length,
steps,
cfg,
generator=generator,
).videos
video = batch_images_interpolation_tool(video, frame_inter_model, inter_frames=fi_step-1)
save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
save_videos_grid(
video,
save_path,
n_rows=1,
fps=fps,
)
# save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio"
# save_pil_imgs(video, save_path)
# save_path = batch_images_interpolation_tool(save_path, frame_inter_model, int(fps))
stream = ffmpeg.input(save_path)
audio = ffmpeg.input(input_audio)
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
os.remove(save_path)
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
@spaces.GPU(duration=300)
def video2video(ref_img, source_video, size=512, steps=25, length=60, seed=42):
cfg = 3.5
fi_step = 3
generator = torch.manual_seed(seed)
width, height = size, size
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"
save_dir = Path(f"output/{date_str}/{save_dir_name}")
save_dir.mkdir(exist_ok=True, parents=True)
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
ref_image_np = crop_face(ref_image_np, lmk_extractor)
if ref_image_np is None:
return None, Image.fromarray(ref_img)
ref_image_np = cv2.resize(ref_image_np, (size, size))
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
face_result = lmk_extractor(ref_image_np)
if face_result is None:
return None, ref_image_pil
lmks = face_result['lmks'].astype(np.float32)
ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
source_images = read_frames(source_video)
src_fps = get_fps(source_video)
pose_transform = transforms.Compose(
[transforms.Resize((height, width)), transforms.ToTensor()]
)
step = 1
if src_fps == 60:
src_fps = 30
step = 2
pose_trans_list = []
verts_list = []
bs_list = []
args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step
args_L = min(args_L, 150*step)
for src_image_pil in source_images[: args_L : step*fi_step]:
src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR)
frame_height, frame_width, _ = src_img_np.shape
src_img_result = lmk_extractor(src_img_np)
if src_img_result is None:
break
pose_trans_list.append(src_img_result['trans_mat'])
verts_list.append(src_img_result['lmks3d'])
bs_list.append(src_img_result['bs'])
trans_mat_arr = np.array(pose_trans_list)
verts_arr = np.array(verts_list)
bs_arr = np.array(bs_list)
min_bs_idx = np.argmin(bs_arr.sum(1))
# compute delta pose
pose_arr = np.zeros([trans_mat_arr.shape[0], 6])
for i in range(pose_arr.shape[0]):
euler_angles, translation_vector = matrix_to_euler_and_translation(trans_mat_arr[i]) # real pose of source
pose_arr[i, :3] = euler_angles
pose_arr[i, 3:6] = translation_vector
init_tran_vec = face_result['trans_mat'][:3, 3] # init translation of tgt
pose_arr[:, 3:6] = pose_arr[:, 3:6] - pose_arr[0, 3:6] + init_tran_vec # (relative translation of source) + (init translation of tgt)
pose_arr_smooth = smooth_pose_seq(pose_arr, window_size=3)
pose_mat_smooth = [euler_and_translation_to_matrix(pose_arr_smooth[i][:3], pose_arr_smooth[i][3:6]) for i in range(pose_arr_smooth.shape[0])]
pose_mat_smooth = np.array(pose_mat_smooth)
# face retarget
verts_arr = verts_arr - verts_arr[min_bs_idx] + face_result['lmks3d']
# project 3D mesh to 2D landmark
projected_vertices = project_points_with_trans(verts_arr, pose_mat_smooth, [frame_height, frame_width])
pose_list = []
for i, verts in enumerate(projected_vertices):
lmk_img = vis.draw_landmarks((frame_width, frame_height), verts, normed=False)
pose_image_np = cv2.resize(lmk_img, (width, height))
pose_list.append(pose_image_np)
pose_list = np.array(pose_list)
video_length = len(pose_list)
video = pipe(
ref_image_pil,
pose_list,
ref_pose,
width,
height,
video_length,
steps,
cfg,
generator=generator,
).videos
video = batch_images_interpolation_tool(video, frame_inter_model, inter_frames=fi_step-1)
save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
save_videos_grid(
video,
save_path,
n_rows=1,
fps=src_fps,
)
# save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio"
# save_pil_imgs(video, save_path)
# save_path = batch_images_interpolation_tool(save_path, frame_inter_model, int(src_fps))
audio_output = f'{save_dir}/audio_from_video.aac'
# extract audio
try:
ffmpeg.input(source_video).output(audio_output, acodec='copy').run()
# merge audio and video
stream = ffmpeg.input(save_path)
audio = ffmpeg.input(audio_output)
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
os.remove(save_path)
os.remove(audio_output)
except:
shutil.move(
save_path,
save_path.replace('_noaudio.mp4', '.mp4')
)
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
################# GUI ################
title = r"""
<h1>AniPortrait</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/Zejun-Yang/AniPortrait' target='_blank'><b>AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animations</b></a>.<br>
"""
tips = r"""
Here is an accelerated version of AniPortrait. Due to limitations in computing power, the wait time will be quite long. Please utilize the source code to experience the full performance.
"""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(tips)
with gr.Tab("Audio2video"):
with gr.Row():
with gr.Column():
with gr.Row():
a2v_input_audio = gr.Audio(sources=["upload", "microphone"], type="filepath", editable=True, label="Input audio", interactive=True)
a2v_ref_img = gr.Image(label="Upload reference image", sources="upload")
a2v_headpose_video = gr.Video(label="Option: upload head pose reference video", sources="upload")
with gr.Row():
a2v_size_slider = gr.Slider(minimum=256, maximum=1024, step=8, value=512, label="Video size (-W & -H)")
a2v_step_slider = gr.Slider(minimum=5, maximum=30, step=1, value=20, label="Steps (--steps)")
with gr.Row():
a2v_length = gr.Slider(minimum=0, maximum=150, step=1, value=60, label="Length (-L) (Set 0 to automatically calculate video length.)")
a2v_seed = gr.Number(value=42, label="Seed (--seed)")
a2v_botton = gr.Button("Generate", variant="primary")
a2v_output_video = gr.PlayableVideo(label="Result", interactive=False)
gr.Examples(
examples=[
["configs/inference/audio/lyl.wav", "configs/inference/ref_images/Aragaki.png", None],
["configs/inference/audio/lyl.wav", "configs/inference/ref_images/solo.png", None],
["configs/inference/audio/lyl.wav", "configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"],
],
inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video],
)
with gr.Tab("Video2video"):
with gr.Row():
with gr.Column():
with gr.Row():
v2v_ref_img = gr.Image(label="Upload reference image", sources="upload")
v2v_source_video = gr.Video(label="Upload source video", sources="upload")
with gr.Row():
v2v_size_slider = gr.Slider(minimum=256, maximum=1024, step=8, value=512, label="Video size (-W & -H)")
v2v_step_slider = gr.Slider(minimum=5, maximum=30, step=1, value=20, label="Steps (--steps)")
with gr.Row():
v2v_length = gr.Slider(minimum=0, maximum=150, step=1, value=60, label="Length (-L) (Set 0 to automatically calculate video length.)")
v2v_seed = gr.Number(value=42, label="Seed (--seed)")
v2v_botton = gr.Button("Generate", variant="primary")
v2v_output_video = gr.PlayableVideo(label="Result", interactive=False)
gr.Examples(
examples=[
["configs/inference/ref_images/Aragaki.png", "configs/inference/video/Aragaki_song.mp4"],
["configs/inference/ref_images/solo.png", "configs/inference/video/Aragaki_song.mp4"],
["configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"],
],
inputs=[v2v_ref_img, v2v_source_video, a2v_headpose_video],
)
a2v_botton.click(
fn=audio2video,
inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video,
a2v_size_slider, a2v_step_slider, a2v_length, a2v_seed],
outputs=[a2v_output_video, a2v_ref_img]
)
v2v_botton.click(
fn=video2video,
inputs=[v2v_ref_img, v2v_source_video,
v2v_size_slider, v2v_step_slider, v2v_length, v2v_seed],
outputs=[v2v_output_video, v2v_ref_img]
)
demo.launch()