Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,771 Bytes
2e4e201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
import torch
import torch.nn as nn
import torch.nn.init as init
from einops import rearrange
import numpy as np
from diffusers.models.modeling_utils import ModelMixin
from typing import Any, Dict, Optional
from src.models.attention import BasicTransformerBlock
class PoseGuider(ModelMixin):
def __init__(self, noise_latent_channels=320, use_ca=True):
super(PoseGuider, self).__init__()
self.use_ca = use_ca
self.conv_layers = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, padding=1),
nn.BatchNorm2d(3),
nn.ReLU(),
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU()
)
# Final projection layer
self.final_proj = nn.Conv2d(in_channels=128, out_channels=noise_latent_channels, kernel_size=1)
self.conv_layers_1 = nn.Sequential(
nn.Conv2d(in_channels=noise_latent_channels, out_channels=noise_latent_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(noise_latent_channels),
nn.ReLU(),
nn.Conv2d(in_channels=noise_latent_channels, out_channels=noise_latent_channels, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(noise_latent_channels),
nn.ReLU(),
)
self.conv_layers_2 = nn.Sequential(
nn.Conv2d(in_channels=noise_latent_channels, out_channels=noise_latent_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(noise_latent_channels),
nn.ReLU(),
nn.Conv2d(in_channels=noise_latent_channels, out_channels=noise_latent_channels*2, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(noise_latent_channels*2),
nn.ReLU(),
)
self.conv_layers_3 = nn.Sequential(
nn.Conv2d(in_channels=noise_latent_channels*2, out_channels=noise_latent_channels*2, kernel_size=3, padding=1),
nn.BatchNorm2d(noise_latent_channels*2),
nn.ReLU(),
nn.Conv2d(in_channels=noise_latent_channels*2, out_channels=noise_latent_channels*4, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(noise_latent_channels*4),
nn.ReLU(),
)
self.conv_layers_4 = nn.Sequential(
nn.Conv2d(in_channels=noise_latent_channels*4, out_channels=noise_latent_channels*4, kernel_size=3, padding=1),
nn.BatchNorm2d(noise_latent_channels*4),
nn.ReLU(),
)
if self.use_ca:
self.cross_attn1 = Transformer2DModel(in_channels=noise_latent_channels)
self.cross_attn2 = Transformer2DModel(in_channels=noise_latent_channels*2)
self.cross_attn3 = Transformer2DModel(in_channels=noise_latent_channels*4)
self.cross_attn4 = Transformer2DModel(in_channels=noise_latent_channels*4)
# Initialize layers
self._initialize_weights()
self.scale = nn.Parameter(torch.ones(1) * 2)
# def _initialize_weights(self):
# # Initialize weights with Gaussian distribution and zero out the final layer
# for m in self.conv_layers:
# if isinstance(m, nn.Conv2d):
# init.normal_(m.weight, mean=0.0, std=0.02)
# if m.bias is not None:
# init.zeros_(m.bias)
# init.zeros_(self.final_proj.weight)
# if self.final_proj.bias is not None:
# init.zeros_(self.final_proj.bias)
def _initialize_weights(self):
# Initialize weights with He initialization and zero out the biases
conv_blocks = [self.conv_layers, self.conv_layers_1, self.conv_layers_2, self.conv_layers_3, self.conv_layers_4]
for block_item in conv_blocks:
for m in block_item:
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels
init.normal_(m.weight, mean=0.0, std=np.sqrt(2. / n))
if m.bias is not None:
init.zeros_(m.bias)
# For the final projection layer, initialize weights to zero (or you may choose to use He initialization here as well)
init.zeros_(self.final_proj.weight)
if self.final_proj.bias is not None:
init.zeros_(self.final_proj.bias)
def forward(self, x, ref_x):
fea = []
b = x.shape[0]
x = rearrange(x, "b c f h w -> (b f) c h w")
x = self.conv_layers(x)
x = self.final_proj(x)
x = x * self.scale
# x = rearrange(x, "(b f) c h w -> b c f h w", b=b)
fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b))
x = self.conv_layers_1(x)
if self.use_ca:
ref_x = self.conv_layers(ref_x)
ref_x = self.final_proj(ref_x)
ref_x = ref_x * self.scale
ref_x = self.conv_layers_1(ref_x)
x = self.cross_attn1(x, ref_x)
fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b))
x = self.conv_layers_2(x)
if self.use_ca:
ref_x = self.conv_layers_2(ref_x)
x = self.cross_attn2(x, ref_x)
fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b))
x = self.conv_layers_3(x)
if self.use_ca:
ref_x = self.conv_layers_3(ref_x)
x = self.cross_attn3(x, ref_x)
fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b))
x = self.conv_layers_4(x)
if self.use_ca:
ref_x = self.conv_layers_4(ref_x)
x = self.cross_attn4(x, ref_x)
fea.append(rearrange(x, "(b f) c h w -> b c f h w", b=b))
return fea
# @classmethod
# def from_pretrained(cls,pretrained_model_path):
# if not os.path.exists(pretrained_model_path):
# print(f"There is no model file in {pretrained_model_path}")
# print(f"loaded PoseGuider's pretrained weights from {pretrained_model_path} ...")
# state_dict = torch.load(pretrained_model_path, map_location="cpu")
# model = Hack_PoseGuider(noise_latent_channels=320)
# m, u = model.load_state_dict(state_dict, strict=True)
# # print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
# params = [p.numel() for n, p in model.named_parameters()]
# print(f"### PoseGuider's Parameters: {sum(params) / 1e6} M")
# return model
class Transformer2DModel(ModelMixin):
_supports_gradient_checkpointing = True
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_type: str = "layer_norm",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
attention_type: str = "default",
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(
num_groups=norm_num_groups,
num_channels=in_channels,
eps=1e-6,
affine=True,
)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
)
for d in range(num_layers)
]
)
if use_linear_projection:
self.proj_out = nn.Linear(inner_dim, in_channels)
else:
self.proj_out = nn.Conv2d(
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
):
batch, _, height, width = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * width, inner_dim
)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * width, inner_dim
)
hidden_states = self.proj_in(hidden_states)
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
timestep=timestep,
)
if not self.use_linear_projection:
hidden_states = (
hidden_states.reshape(batch, height, width, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, width, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
output = hidden_states + residual
return output
if __name__ == '__main__':
model = PoseGuider(noise_latent_channels=320).to(device="cuda")
input_data = torch.randn(1,3,1,512,512).to(device="cuda")
input_data1 = torch.randn(1,3,512,512).to(device="cuda")
output = model(input_data, input_data1)
for item in output:
print(item.shape)
# tf_model = Transformer2DModel(
# in_channels=320
# ).to('cuda')
# input_data = torch.randn(4,320,32,32).to(device="cuda")
# # input_emb = torch.randn(4,1,768).to(device="cuda")
# input_emb = torch.randn(4,320,32,32).to(device="cuda")
# o1 = tf_model(input_data, input_emb)
# print(o1.shape)
|