CosyVoice-300M / third_party /Matcha-TTS /matcha /utils /generate_data_statistics.py
ljy266987
add lfs
12bfd03
raw
history blame
3.27 kB
r"""
The file creates a pickle file where the values needed for loading of dataset is stored and the model can load it
when needed.
Parameters from hparam.py will be used
"""
import argparse
import json
import os
import sys
from pathlib import Path
import rootutils
import torch
from hydra import compose, initialize
from omegaconf import open_dict
from tqdm.auto import tqdm
from matcha.data.text_mel_datamodule import TextMelDataModule
from matcha.utils.logging_utils import pylogger
log = pylogger.get_pylogger(__name__)
def compute_data_statistics(data_loader: torch.utils.data.DataLoader, out_channels: int):
"""Generate data mean and standard deviation helpful in data normalisation
Args:
data_loader (torch.utils.data.Dataloader): _description_
out_channels (int): mel spectrogram channels
"""
total_mel_sum = 0
total_mel_sq_sum = 0
total_mel_len = 0
for batch in tqdm(data_loader, leave=False):
mels = batch["y"]
mel_lengths = batch["y_lengths"]
total_mel_len += torch.sum(mel_lengths)
total_mel_sum += torch.sum(mels)
total_mel_sq_sum += torch.sum(torch.pow(mels, 2))
data_mean = total_mel_sum / (total_mel_len * out_channels)
data_std = torch.sqrt((total_mel_sq_sum / (total_mel_len * out_channels)) - torch.pow(data_mean, 2))
return {"mel_mean": data_mean.item(), "mel_std": data_std.item()}
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"-i",
"--input-config",
type=str,
default="vctk.yaml",
help="The name of the yaml config file under configs/data",
)
parser.add_argument(
"-b",
"--batch-size",
type=int,
default="256",
help="Can have increased batch size for faster computation",
)
parser.add_argument(
"-f",
"--force",
action="store_true",
default=False,
required=False,
help="force overwrite the file",
)
args = parser.parse_args()
output_file = Path(args.input_config).with_suffix(".json")
if os.path.exists(output_file) and not args.force:
print("File already exists. Use -f to force overwrite")
sys.exit(1)
with initialize(version_base="1.3", config_path="../../configs/data"):
cfg = compose(config_name=args.input_config, return_hydra_config=True, overrides=[])
root_path = rootutils.find_root(search_from=__file__, indicator=".project-root")
with open_dict(cfg):
del cfg["hydra"]
del cfg["_target_"]
cfg["data_statistics"] = None
cfg["seed"] = 1234
cfg["batch_size"] = args.batch_size
cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
text_mel_datamodule = TextMelDataModule(**cfg)
text_mel_datamodule.setup()
data_loader = text_mel_datamodule.train_dataloader()
log.info("Dataloader loaded! Now computing stats...")
params = compute_data_statistics(data_loader, cfg["n_feats"])
print(params)
json.dump(
params,
open(output_file, "w"),
)
if __name__ == "__main__":
main()